pyo3/buffer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
#![cfg(any(not(Py_LIMITED_API), Py_3_11))]
// Copyright (c) 2017 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! `PyBuffer` implementation
use crate::Bound;
#[cfg(feature = "gil-refs")]
use crate::PyNativeType;
use crate::{err, exceptions::PyBufferError, ffi, FromPyObject, PyAny, PyResult, Python};
use std::marker::PhantomData;
use std::os::raw;
use std::pin::Pin;
use std::{cell, mem, ptr, slice};
use std::{ffi::CStr, fmt::Debug};
/// Allows access to the underlying buffer used by a python object such as `bytes`, `bytearray` or `array.array`.
// use Pin<Box> because Python expects that the Py_buffer struct has a stable memory address
#[repr(transparent)]
pub struct PyBuffer<T>(Pin<Box<ffi::Py_buffer>>, PhantomData<T>);
// PyBuffer is thread-safe: the shape of the buffer is immutable while a Py_buffer exists.
// Accessing the buffer contents is protected using the GIL.
unsafe impl<T> Send for PyBuffer<T> {}
unsafe impl<T> Sync for PyBuffer<T> {}
impl<T> Debug for PyBuffer<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("PyBuffer")
.field("buf", &self.0.buf)
.field("obj", &self.0.obj)
.field("len", &self.0.len)
.field("itemsize", &self.0.itemsize)
.field("readonly", &self.0.readonly)
.field("ndim", &self.0.ndim)
.field("format", &self.0.format)
.field("shape", &self.0.shape)
.field("strides", &self.0.strides)
.field("suboffsets", &self.0.suboffsets)
.field("internal", &self.0.internal)
.finish()
}
}
/// Represents the type of a Python buffer element.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum ElementType {
/// A signed integer type.
SignedInteger {
/// The width of the signed integer in bytes.
bytes: usize,
},
/// An unsigned integer type.
UnsignedInteger {
/// The width of the unsigned integer in bytes.
bytes: usize,
},
/// A boolean type.
Bool,
/// A float type.
Float {
/// The width of the float in bytes.
bytes: usize,
},
/// An unknown type. This may occur when parsing has failed.
Unknown,
}
impl ElementType {
/// Determines the `ElementType` from a Python `struct` module format string.
///
/// See <https://docs.python.org/3/library/struct.html#format-strings> for more information
/// about struct format strings.
pub fn from_format(format: &CStr) -> ElementType {
match format.to_bytes() {
[size] | [b'@', size] => native_element_type_from_type_char(*size),
[b'=' | b'<' | b'>' | b'!', size] => standard_element_type_from_type_char(*size),
_ => ElementType::Unknown,
}
}
}
fn native_element_type_from_type_char(type_char: u8) -> ElementType {
use self::ElementType::*;
match type_char {
b'c' => UnsignedInteger {
bytes: mem::size_of::<raw::c_char>(),
},
b'b' => SignedInteger {
bytes: mem::size_of::<raw::c_schar>(),
},
b'B' => UnsignedInteger {
bytes: mem::size_of::<raw::c_uchar>(),
},
b'?' => Bool,
b'h' => SignedInteger {
bytes: mem::size_of::<raw::c_short>(),
},
b'H' => UnsignedInteger {
bytes: mem::size_of::<raw::c_ushort>(),
},
b'i' => SignedInteger {
bytes: mem::size_of::<raw::c_int>(),
},
b'I' => UnsignedInteger {
bytes: mem::size_of::<raw::c_uint>(),
},
b'l' => SignedInteger {
bytes: mem::size_of::<raw::c_long>(),
},
b'L' => UnsignedInteger {
bytes: mem::size_of::<raw::c_ulong>(),
},
b'q' => SignedInteger {
bytes: mem::size_of::<raw::c_longlong>(),
},
b'Q' => UnsignedInteger {
bytes: mem::size_of::<raw::c_ulonglong>(),
},
b'n' => SignedInteger {
bytes: mem::size_of::<libc::ssize_t>(),
},
b'N' => UnsignedInteger {
bytes: mem::size_of::<libc::size_t>(),
},
b'e' => Float { bytes: 2 },
b'f' => Float { bytes: 4 },
b'd' => Float { bytes: 8 },
_ => Unknown,
}
}
fn standard_element_type_from_type_char(type_char: u8) -> ElementType {
use self::ElementType::*;
match type_char {
b'c' | b'B' => UnsignedInteger { bytes: 1 },
b'b' => SignedInteger { bytes: 1 },
b'?' => Bool,
b'h' => SignedInteger { bytes: 2 },
b'H' => UnsignedInteger { bytes: 2 },
b'i' | b'l' => SignedInteger { bytes: 4 },
b'I' | b'L' => UnsignedInteger { bytes: 4 },
b'q' => SignedInteger { bytes: 8 },
b'Q' => UnsignedInteger { bytes: 8 },
b'e' => Float { bytes: 2 },
b'f' => Float { bytes: 4 },
b'd' => Float { bytes: 8 },
_ => Unknown,
}
}
#[cfg(target_endian = "little")]
fn is_matching_endian(c: u8) -> bool {
c == b'@' || c == b'=' || c == b'>'
}
#[cfg(target_endian = "big")]
fn is_matching_endian(c: u8) -> bool {
c == b'@' || c == b'=' || c == b'>' || c == b'!'
}
/// Trait implemented for possible element types of `PyBuffer`.
///
/// # Safety
///
/// This trait must only be implemented for types which represent valid elements of Python buffers.
pub unsafe trait Element: Copy {
/// Gets whether the element specified in the format string is potentially compatible.
/// Alignment and size are checked separately from this function.
fn is_compatible_format(format: &CStr) -> bool;
}
impl<'py, T: Element> FromPyObject<'py> for PyBuffer<T> {
fn extract_bound(obj: &Bound<'_, PyAny>) -> PyResult<PyBuffer<T>> {
Self::get_bound(obj)
}
}
impl<T: Element> PyBuffer<T> {
/// Deprecated form of [`PyBuffer::get_bound`]
#[cfg(feature = "gil-refs")]
#[deprecated(
since = "0.21.0",
note = "`PyBuffer::get` will be replaced by `PyBuffer::get_bound` in a future PyO3 version"
)]
pub fn get(obj: &PyAny) -> PyResult<PyBuffer<T>> {
Self::get_bound(&obj.as_borrowed())
}
/// Gets the underlying buffer from the specified python object.
pub fn get_bound(obj: &Bound<'_, PyAny>) -> PyResult<PyBuffer<T>> {
// TODO: use nightly API Box::new_uninit() once stable
let mut buf = Box::new(mem::MaybeUninit::uninit());
let buf: Box<ffi::Py_buffer> = {
err::error_on_minusone(obj.py(), unsafe {
ffi::PyObject_GetBuffer(obj.as_ptr(), buf.as_mut_ptr(), ffi::PyBUF_FULL_RO)
})?;
// Safety: buf is initialized by PyObject_GetBuffer.
// TODO: use nightly API Box::assume_init() once stable
unsafe { mem::transmute(buf) }
};
// Create PyBuffer immediately so that if validation checks fail, the PyBuffer::drop code
// will call PyBuffer_Release (thus avoiding any leaks).
let buf = PyBuffer(Pin::from(buf), PhantomData);
if buf.0.shape.is_null() {
Err(PyBufferError::new_err("shape is null"))
} else if buf.0.strides.is_null() {
Err(PyBufferError::new_err("strides is null"))
} else if mem::size_of::<T>() != buf.item_size() || !T::is_compatible_format(buf.format()) {
Err(PyBufferError::new_err(format!(
"buffer contents are not compatible with {}",
std::any::type_name::<T>()
)))
} else if buf.0.buf.align_offset(mem::align_of::<T>()) != 0 {
Err(PyBufferError::new_err(format!(
"buffer contents are insufficiently aligned for {}",
std::any::type_name::<T>()
)))
} else {
Ok(buf)
}
}
/// Gets the pointer to the start of the buffer memory.
///
/// Warning: the buffer memory might be mutated by other Python functions,
/// and thus may only be accessed while the GIL is held.
#[inline]
pub fn buf_ptr(&self) -> *mut raw::c_void {
self.0.buf
}
/// Gets a pointer to the specified item.
///
/// If `indices.len() < self.dimensions()`, returns the start address of the sub-array at the specified dimension.
pub fn get_ptr(&self, indices: &[usize]) -> *mut raw::c_void {
let shape = &self.shape()[..indices.len()];
for i in 0..indices.len() {
assert!(indices[i] < shape[i]);
}
unsafe {
ffi::PyBuffer_GetPointer(
#[cfg(Py_3_11)]
&*self.0,
#[cfg(not(Py_3_11))]
{
&*self.0 as *const ffi::Py_buffer as *mut ffi::Py_buffer
},
#[cfg(Py_3_11)]
{
indices.as_ptr().cast()
},
#[cfg(not(Py_3_11))]
{
indices.as_ptr() as *mut ffi::Py_ssize_t
},
)
}
}
/// Gets whether the underlying buffer is read-only.
#[inline]
pub fn readonly(&self) -> bool {
self.0.readonly != 0
}
/// Gets the size of a single element, in bytes.
/// Important exception: when requesting an unformatted buffer, item_size still has the value
#[inline]
pub fn item_size(&self) -> usize {
self.0.itemsize as usize
}
/// Gets the total number of items.
#[inline]
pub fn item_count(&self) -> usize {
(self.0.len as usize) / (self.0.itemsize as usize)
}
/// `item_size() * item_count()`.
/// For contiguous arrays, this is the length of the underlying memory block.
/// For non-contiguous arrays, it is the length that the logical structure would have if it were copied to a contiguous representation.
#[inline]
pub fn len_bytes(&self) -> usize {
self.0.len as usize
}
/// Gets the number of dimensions.
///
/// May be 0 to indicate a single scalar value.
#[inline]
pub fn dimensions(&self) -> usize {
self.0.ndim as usize
}
/// Returns an array of length `dimensions`. `shape()[i]` is the length of the array in dimension number `i`.
///
/// May return None for single-dimensional arrays or scalar values (`dimensions() <= 1`);
/// You can call `item_count()` to get the length of the single dimension.
///
/// Despite Python using an array of signed integers, the values are guaranteed to be non-negative.
/// However, dimensions of length 0 are possible and might need special attention.
#[inline]
pub fn shape(&self) -> &[usize] {
unsafe { slice::from_raw_parts(self.0.shape.cast(), self.0.ndim as usize) }
}
/// Returns an array that holds, for each dimension, the number of bytes to skip to get to the next element in the dimension.
///
/// Stride values can be any integer. For regular arrays, strides are usually positive,
/// but a consumer MUST be able to handle the case `strides[n] <= 0`.
#[inline]
pub fn strides(&self) -> &[isize] {
unsafe { slice::from_raw_parts(self.0.strides, self.0.ndim as usize) }
}
/// An array of length ndim.
/// If `suboffsets[n] >= 0`, the values stored along the nth dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-referencing.
/// A suboffset value that is negative indicates that no de-referencing should occur (striding in a contiguous memory block).
///
/// If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default value).
#[inline]
pub fn suboffsets(&self) -> Option<&[isize]> {
unsafe {
if self.0.suboffsets.is_null() {
None
} else {
Some(slice::from_raw_parts(
self.0.suboffsets,
self.0.ndim as usize,
))
}
}
}
/// A NUL terminated string in struct module style syntax describing the contents of a single item.
#[inline]
pub fn format(&self) -> &CStr {
if self.0.format.is_null() {
ffi::c_str!("B")
} else {
unsafe { CStr::from_ptr(self.0.format) }
}
}
/// Gets whether the buffer is contiguous in C-style order (last index varies fastest when visiting items in order of memory address).
#[inline]
pub fn is_c_contiguous(&self) -> bool {
unsafe { ffi::PyBuffer_IsContiguous(&*self.0, b'C' as std::os::raw::c_char) != 0 }
}
/// Gets whether the buffer is contiguous in Fortran-style order (first index varies fastest when visiting items in order of memory address).
#[inline]
pub fn is_fortran_contiguous(&self) -> bool {
unsafe { ffi::PyBuffer_IsContiguous(&*self.0, b'F' as std::os::raw::c_char) != 0 }
}
/// Gets the buffer memory as a slice.
///
/// This function succeeds if:
/// * the buffer format is compatible with `T`
/// * alignment and size of buffer elements is matching the expectations for type `T`
/// * the buffer is C-style contiguous
///
/// The returned slice uses type `Cell<T>` because it's theoretically possible for any call into the Python runtime
/// to modify the values in the slice.
pub fn as_slice<'a>(&'a self, _py: Python<'a>) -> Option<&'a [ReadOnlyCell<T>]> {
if self.is_c_contiguous() {
unsafe {
Some(slice::from_raw_parts(
self.0.buf as *mut ReadOnlyCell<T>,
self.item_count(),
))
}
} else {
None
}
}
/// Gets the buffer memory as a slice.
///
/// This function succeeds if:
/// * the buffer is not read-only
/// * the buffer format is compatible with `T`
/// * alignment and size of buffer elements is matching the expectations for type `T`
/// * the buffer is C-style contiguous
///
/// The returned slice uses type `Cell<T>` because it's theoretically possible for any call into the Python runtime
/// to modify the values in the slice.
pub fn as_mut_slice<'a>(&'a self, _py: Python<'a>) -> Option<&'a [cell::Cell<T>]> {
if !self.readonly() && self.is_c_contiguous() {
unsafe {
Some(slice::from_raw_parts(
self.0.buf as *mut cell::Cell<T>,
self.item_count(),
))
}
} else {
None
}
}
/// Gets the buffer memory as a slice.
///
/// This function succeeds if:
/// * the buffer format is compatible with `T`
/// * alignment and size of buffer elements is matching the expectations for type `T`
/// * the buffer is Fortran-style contiguous
///
/// The returned slice uses type `Cell<T>` because it's theoretically possible for any call into the Python runtime
/// to modify the values in the slice.
pub fn as_fortran_slice<'a>(&'a self, _py: Python<'a>) -> Option<&'a [ReadOnlyCell<T>]> {
if mem::size_of::<T>() == self.item_size() && self.is_fortran_contiguous() {
unsafe {
Some(slice::from_raw_parts(
self.0.buf as *mut ReadOnlyCell<T>,
self.item_count(),
))
}
} else {
None
}
}
/// Gets the buffer memory as a slice.
///
/// This function succeeds if:
/// * the buffer is not read-only
/// * the buffer format is compatible with `T`
/// * alignment and size of buffer elements is matching the expectations for type `T`
/// * the buffer is Fortran-style contiguous
///
/// The returned slice uses type `Cell<T>` because it's theoretically possible for any call into the Python runtime
/// to modify the values in the slice.
pub fn as_fortran_mut_slice<'a>(&'a self, _py: Python<'a>) -> Option<&'a [cell::Cell<T>]> {
if !self.readonly() && self.is_fortran_contiguous() {
unsafe {
Some(slice::from_raw_parts(
self.0.buf as *mut cell::Cell<T>,
self.item_count(),
))
}
} else {
None
}
}
/// Copies the buffer elements to the specified slice.
/// If the buffer is multi-dimensional, the elements are written in C-style order.
///
/// * Fails if the slice does not have the correct length (`buf.item_count()`).
/// * Fails if the buffer format is not compatible with type `T`.
///
/// To check whether the buffer format is compatible before calling this method,
/// you can use `<T as buffer::Element>::is_compatible_format(buf.format())`.
/// Alternatively, `match buffer::ElementType::from_format(buf.format())`.
pub fn copy_to_slice(&self, py: Python<'_>, target: &mut [T]) -> PyResult<()> {
self._copy_to_slice(py, target, b'C')
}
/// Copies the buffer elements to the specified slice.
/// If the buffer is multi-dimensional, the elements are written in Fortran-style order.
///
/// * Fails if the slice does not have the correct length (`buf.item_count()`).
/// * Fails if the buffer format is not compatible with type `T`.
///
/// To check whether the buffer format is compatible before calling this method,
/// you can use `<T as buffer::Element>::is_compatible_format(buf.format())`.
/// Alternatively, `match buffer::ElementType::from_format(buf.format())`.
pub fn copy_to_fortran_slice(&self, py: Python<'_>, target: &mut [T]) -> PyResult<()> {
self._copy_to_slice(py, target, b'F')
}
fn _copy_to_slice(&self, py: Python<'_>, target: &mut [T], fort: u8) -> PyResult<()> {
if mem::size_of_val(target) != self.len_bytes() {
return Err(PyBufferError::new_err(format!(
"slice to copy to (of length {}) does not match buffer length of {}",
target.len(),
self.item_count()
)));
}
err::error_on_minusone(py, unsafe {
ffi::PyBuffer_ToContiguous(
target.as_mut_ptr().cast(),
#[cfg(Py_3_11)]
&*self.0,
#[cfg(not(Py_3_11))]
{
&*self.0 as *const ffi::Py_buffer as *mut ffi::Py_buffer
},
self.0.len,
fort as std::os::raw::c_char,
)
})
}
/// Copies the buffer elements to a newly allocated vector.
/// If the buffer is multi-dimensional, the elements are written in C-style order.
///
/// Fails if the buffer format is not compatible with type `T`.
pub fn to_vec(&self, py: Python<'_>) -> PyResult<Vec<T>> {
self._to_vec(py, b'C')
}
/// Copies the buffer elements to a newly allocated vector.
/// If the buffer is multi-dimensional, the elements are written in Fortran-style order.
///
/// Fails if the buffer format is not compatible with type `T`.
pub fn to_fortran_vec(&self, py: Python<'_>) -> PyResult<Vec<T>> {
self._to_vec(py, b'F')
}
fn _to_vec(&self, py: Python<'_>, fort: u8) -> PyResult<Vec<T>> {
let item_count = self.item_count();
let mut vec: Vec<T> = Vec::with_capacity(item_count);
// Copy the buffer into the uninitialized space in the vector.
// Due to T:Copy, we don't need to be concerned with Drop impls.
err::error_on_minusone(py, unsafe {
ffi::PyBuffer_ToContiguous(
vec.as_ptr() as *mut raw::c_void,
#[cfg(Py_3_11)]
&*self.0,
#[cfg(not(Py_3_11))]
{
&*self.0 as *const ffi::Py_buffer as *mut ffi::Py_buffer
},
self.0.len,
fort as std::os::raw::c_char,
)
})?;
// set vector length to mark the now-initialized space as usable
unsafe { vec.set_len(item_count) };
Ok(vec)
}
/// Copies the specified slice into the buffer.
/// If the buffer is multi-dimensional, the elements in the slice are expected to be in C-style order.
///
/// * Fails if the buffer is read-only.
/// * Fails if the slice does not have the correct length (`buf.item_count()`).
/// * Fails if the buffer format is not compatible with type `T`.
///
/// To check whether the buffer format is compatible before calling this method,
/// use `<T as buffer::Element>::is_compatible_format(buf.format())`.
/// Alternatively, `match buffer::ElementType::from_format(buf.format())`.
pub fn copy_from_slice(&self, py: Python<'_>, source: &[T]) -> PyResult<()> {
self._copy_from_slice(py, source, b'C')
}
/// Copies the specified slice into the buffer.
/// If the buffer is multi-dimensional, the elements in the slice are expected to be in Fortran-style order.
///
/// * Fails if the buffer is read-only.
/// * Fails if the slice does not have the correct length (`buf.item_count()`).
/// * Fails if the buffer format is not compatible with type `T`.
///
/// To check whether the buffer format is compatible before calling this method,
/// use `<T as buffer::Element>::is_compatible_format(buf.format())`.
/// Alternatively, `match buffer::ElementType::from_format(buf.format())`.
pub fn copy_from_fortran_slice(&self, py: Python<'_>, source: &[T]) -> PyResult<()> {
self._copy_from_slice(py, source, b'F')
}
fn _copy_from_slice(&self, py: Python<'_>, source: &[T], fort: u8) -> PyResult<()> {
if self.readonly() {
return Err(PyBufferError::new_err("cannot write to read-only buffer"));
} else if mem::size_of_val(source) != self.len_bytes() {
return Err(PyBufferError::new_err(format!(
"slice to copy from (of length {}) does not match buffer length of {}",
source.len(),
self.item_count()
)));
}
err::error_on_minusone(py, unsafe {
ffi::PyBuffer_FromContiguous(
#[cfg(Py_3_11)]
&*self.0,
#[cfg(not(Py_3_11))]
{
&*self.0 as *const ffi::Py_buffer as *mut ffi::Py_buffer
},
#[cfg(Py_3_11)]
{
source.as_ptr().cast()
},
#[cfg(not(Py_3_11))]
{
source.as_ptr() as *mut raw::c_void
},
self.0.len,
fort as std::os::raw::c_char,
)
})
}
/// Releases the buffer object, freeing the reference to the Python object
/// which owns the buffer.
///
/// This will automatically be called on drop.
pub fn release(self, _py: Python<'_>) {
// First move self into a ManuallyDrop, so that PyBuffer::drop will
// never be called. (It would acquire the GIL and call PyBuffer_Release
// again.)
let mut mdself = mem::ManuallyDrop::new(self);
unsafe {
// Next, make the actual PyBuffer_Release call.
ffi::PyBuffer_Release(&mut *mdself.0);
// Finally, drop the contained Pin<Box<_>> in place, to free the
// Box memory.
let inner: *mut Pin<Box<ffi::Py_buffer>> = &mut mdself.0;
ptr::drop_in_place(inner);
}
}
}
impl<T> Drop for PyBuffer<T> {
fn drop(&mut self) {
Python::with_gil(|_| unsafe { ffi::PyBuffer_Release(&mut *self.0) });
}
}
/// Like [std::cell::Cell], but only provides read-only access to the data.
///
/// `&ReadOnlyCell<T>` is basically a safe version of `*const T`:
/// The data cannot be modified through the reference, but other references may
/// be modifying the data.
#[repr(transparent)]
pub struct ReadOnlyCell<T: Element>(cell::UnsafeCell<T>);
impl<T: Element> ReadOnlyCell<T> {
/// Returns a copy of the current value.
#[inline]
pub fn get(&self) -> T {
unsafe { *self.0.get() }
}
/// Returns a pointer to the current value.
#[inline]
pub fn as_ptr(&self) -> *const T {
self.0.get()
}
}
macro_rules! impl_element(
($t:ty, $f:ident) => {
unsafe impl Element for $t {
fn is_compatible_format(format: &CStr) -> bool {
let slice = format.to_bytes();
if slice.len() > 1 && !is_matching_endian(slice[0]) {
return false;
}
ElementType::from_format(format) == ElementType::$f { bytes: mem::size_of::<$t>() }
}
}
}
);
impl_element!(u8, UnsignedInteger);
impl_element!(u16, UnsignedInteger);
impl_element!(u32, UnsignedInteger);
impl_element!(u64, UnsignedInteger);
impl_element!(usize, UnsignedInteger);
impl_element!(i8, SignedInteger);
impl_element!(i16, SignedInteger);
impl_element!(i32, SignedInteger);
impl_element!(i64, SignedInteger);
impl_element!(isize, SignedInteger);
impl_element!(f32, Float);
impl_element!(f64, Float);
#[cfg(test)]
mod tests {
use super::PyBuffer;
use crate::ffi;
use crate::types::any::PyAnyMethods;
use crate::Python;
#[test]
fn test_debug() {
Python::with_gil(|py| {
let bytes = py.eval_bound("b'abcde'", None, None).unwrap();
let buffer: PyBuffer<u8> = PyBuffer::get_bound(&bytes).unwrap();
let expected = format!(
concat!(
"PyBuffer {{ buf: {:?}, obj: {:?}, ",
"len: 5, itemsize: 1, readonly: 1, ",
"ndim: 1, format: {:?}, shape: {:?}, ",
"strides: {:?}, suboffsets: {:?}, internal: {:?} }}",
),
buffer.0.buf,
buffer.0.obj,
buffer.0.format,
buffer.0.shape,
buffer.0.strides,
buffer.0.suboffsets,
buffer.0.internal
);
let debug_repr = format!("{:?}", buffer);
assert_eq!(debug_repr, expected);
});
}
#[test]
fn test_element_type_from_format() {
use super::ElementType;
use super::ElementType::*;
use std::mem::size_of;
use std::os::raw;
for (cstr, expected) in [
// @ prefix goes to native_element_type_from_type_char
(
ffi::c_str!("@b"),
SignedInteger {
bytes: size_of::<raw::c_schar>(),
},
),
(
ffi::c_str!("@c"),
UnsignedInteger {
bytes: size_of::<raw::c_char>(),
},
),
(
ffi::c_str!("@b"),
SignedInteger {
bytes: size_of::<raw::c_schar>(),
},
),
(
ffi::c_str!("@B"),
UnsignedInteger {
bytes: size_of::<raw::c_uchar>(),
},
),
(ffi::c_str!("@?"), Bool),
(
ffi::c_str!("@h"),
SignedInteger {
bytes: size_of::<raw::c_short>(),
},
),
(
ffi::c_str!("@H"),
UnsignedInteger {
bytes: size_of::<raw::c_ushort>(),
},
),
(
ffi::c_str!("@i"),
SignedInteger {
bytes: size_of::<raw::c_int>(),
},
),
(
ffi::c_str!("@I"),
UnsignedInteger {
bytes: size_of::<raw::c_uint>(),
},
),
(
ffi::c_str!("@l"),
SignedInteger {
bytes: size_of::<raw::c_long>(),
},
),
(
ffi::c_str!("@L"),
UnsignedInteger {
bytes: size_of::<raw::c_ulong>(),
},
),
(
ffi::c_str!("@q"),
SignedInteger {
bytes: size_of::<raw::c_longlong>(),
},
),
(
ffi::c_str!("@Q"),
UnsignedInteger {
bytes: size_of::<raw::c_ulonglong>(),
},
),
(
ffi::c_str!("@n"),
SignedInteger {
bytes: size_of::<libc::ssize_t>(),
},
),
(
ffi::c_str!("@N"),
UnsignedInteger {
bytes: size_of::<libc::size_t>(),
},
),
(ffi::c_str!("@e"), Float { bytes: 2 }),
(ffi::c_str!("@f"), Float { bytes: 4 }),
(ffi::c_str!("@d"), Float { bytes: 8 }),
(ffi::c_str!("@z"), Unknown),
// = prefix goes to standard_element_type_from_type_char
(ffi::c_str!("=b"), SignedInteger { bytes: 1 }),
(ffi::c_str!("=c"), UnsignedInteger { bytes: 1 }),
(ffi::c_str!("=B"), UnsignedInteger { bytes: 1 }),
(ffi::c_str!("=?"), Bool),
(ffi::c_str!("=h"), SignedInteger { bytes: 2 }),
(ffi::c_str!("=H"), UnsignedInteger { bytes: 2 }),
(ffi::c_str!("=l"), SignedInteger { bytes: 4 }),
(ffi::c_str!("=l"), SignedInteger { bytes: 4 }),
(ffi::c_str!("=I"), UnsignedInteger { bytes: 4 }),
(ffi::c_str!("=L"), UnsignedInteger { bytes: 4 }),
(ffi::c_str!("=q"), SignedInteger { bytes: 8 }),
(ffi::c_str!("=Q"), UnsignedInteger { bytes: 8 }),
(ffi::c_str!("=e"), Float { bytes: 2 }),
(ffi::c_str!("=f"), Float { bytes: 4 }),
(ffi::c_str!("=d"), Float { bytes: 8 }),
(ffi::c_str!("=z"), Unknown),
(ffi::c_str!("=0"), Unknown),
// unknown prefix -> Unknown
(ffi::c_str!(":b"), Unknown),
] {
assert_eq!(
ElementType::from_format(cstr),
expected,
"element from format &Cstr: {:?}",
cstr,
);
}
}
#[test]
fn test_compatible_size() {
// for the cast in PyBuffer::shape()
assert_eq!(
std::mem::size_of::<ffi::Py_ssize_t>(),
std::mem::size_of::<usize>()
);
}
#[test]
fn test_bytes_buffer() {
Python::with_gil(|py| {
let bytes = py.eval_bound("b'abcde'", None, None).unwrap();
let buffer = PyBuffer::get_bound(&bytes).unwrap();
assert_eq!(buffer.dimensions(), 1);
assert_eq!(buffer.item_count(), 5);
assert_eq!(buffer.format().to_str().unwrap(), "B");
assert_eq!(buffer.shape(), [5]);
// single-dimensional buffer is always contiguous
assert!(buffer.is_c_contiguous());
assert!(buffer.is_fortran_contiguous());
let slice = buffer.as_slice(py).unwrap();
assert_eq!(slice.len(), 5);
assert_eq!(slice[0].get(), b'a');
assert_eq!(slice[2].get(), b'c');
assert_eq!(unsafe { *(buffer.get_ptr(&[1]) as *mut u8) }, b'b');
assert!(buffer.as_mut_slice(py).is_none());
assert!(buffer.copy_to_slice(py, &mut [0u8]).is_err());
let mut arr = [0; 5];
buffer.copy_to_slice(py, &mut arr).unwrap();
assert_eq!(arr, b"abcde" as &[u8]);
assert!(buffer.copy_from_slice(py, &[0u8; 5]).is_err());
assert_eq!(buffer.to_vec(py).unwrap(), b"abcde");
});
}
#[test]
fn test_array_buffer() {
Python::with_gil(|py| {
let array = py
.import_bound("array")
.unwrap()
.call_method("array", ("f", (1.0, 1.5, 2.0, 2.5)), None)
.unwrap();
let buffer = PyBuffer::get_bound(&array).unwrap();
assert_eq!(buffer.dimensions(), 1);
assert_eq!(buffer.item_count(), 4);
assert_eq!(buffer.format().to_str().unwrap(), "f");
assert_eq!(buffer.shape(), [4]);
// array creates a 1D contiguious buffer, so it's both C and F contiguous. This would
// be more interesting if we can come up with a 2D buffer but I think it would need a
// third-party lib or a custom class.
// C-contiguous fns
let slice = buffer.as_slice(py).unwrap();
assert_eq!(slice.len(), 4);
assert_eq!(slice[0].get(), 1.0);
assert_eq!(slice[3].get(), 2.5);
let mut_slice = buffer.as_mut_slice(py).unwrap();
assert_eq!(mut_slice.len(), 4);
assert_eq!(mut_slice[0].get(), 1.0);
mut_slice[3].set(2.75);
assert_eq!(slice[3].get(), 2.75);
buffer
.copy_from_slice(py, &[10.0f32, 11.0, 12.0, 13.0])
.unwrap();
assert_eq!(slice[2].get(), 12.0);
assert_eq!(buffer.to_vec(py).unwrap(), [10.0, 11.0, 12.0, 13.0]);
// F-contiguous fns
let buffer = PyBuffer::get_bound(&array).unwrap();
let slice = buffer.as_fortran_slice(py).unwrap();
assert_eq!(slice.len(), 4);
assert_eq!(slice[1].get(), 11.0);
let mut_slice = buffer.as_fortran_mut_slice(py).unwrap();
assert_eq!(mut_slice.len(), 4);
assert_eq!(mut_slice[2].get(), 12.0);
mut_slice[3].set(2.75);
assert_eq!(slice[3].get(), 2.75);
buffer
.copy_from_fortran_slice(py, &[10.0f32, 11.0, 12.0, 13.0])
.unwrap();
assert_eq!(slice[2].get(), 12.0);
assert_eq!(buffer.to_fortran_vec(py).unwrap(), [10.0, 11.0, 12.0, 13.0]);
});
}
}