memchr/memmem/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*!
This module provides forward and reverse substring search routines.
Unlike the standard library's substring search routines, these work on
arbitrary bytes. For all non-empty needles, these routines will report exactly
the same values as the corresponding routines in the standard library. For
the empty needle, the standard library reports matches only at valid UTF-8
boundaries, where as these routines will report matches at every position.
Other than being able to work on arbitrary bytes, the primary reason to prefer
these routines over the standard library routines is that these will generally
be faster. In some cases, significantly so.
# Example: iterating over substring matches
This example shows how to use [`find_iter`] to find occurrences of a substring
in a haystack.
```
use memchr::memmem;
let haystack = b"foo bar foo baz foo";
let mut it = memmem::find_iter(haystack, "foo");
assert_eq!(Some(0), it.next());
assert_eq!(Some(8), it.next());
assert_eq!(Some(16), it.next());
assert_eq!(None, it.next());
```
# Example: iterating over substring matches in reverse
This example shows how to use [`rfind_iter`] to find occurrences of a substring
in a haystack starting from the end of the haystack.
**NOTE:** This module does not implement double ended iterators, so reverse
searches aren't done by calling `rev` on a forward iterator.
```
use memchr::memmem;
let haystack = b"foo bar foo baz foo";
let mut it = memmem::rfind_iter(haystack, "foo");
assert_eq!(Some(16), it.next());
assert_eq!(Some(8), it.next());
assert_eq!(Some(0), it.next());
assert_eq!(None, it.next());
```
# Example: repeating a search for the same needle
It may be possible for the overhead of constructing a substring searcher to be
measurable in some workloads. In cases where the same needle is used to search
many haystacks, it is possible to do construction once and thus to avoid it for
subsequent searches. This can be done with a [`Finder`] (or a [`FinderRev`] for
reverse searches).
```
use memchr::memmem;
let finder = memmem::Finder::new("foo");
assert_eq!(Some(4), finder.find(b"baz foo quux"));
assert_eq!(None, finder.find(b"quux baz bar"));
```
*/
pub use crate::memmem::searcher::PrefilterConfig as Prefilter;
// This is exported here for use in the crate::arch::all::twoway
// implementation. This is essentially an abstraction breaker. Namely, the
// public API of twoway doesn't support providing a prefilter, but its crate
// internal API does. The main reason for this is that I didn't want to do the
// API design required to support it without a concrete use case.
pub(crate) use crate::memmem::searcher::Pre;
use crate::{
arch::all::{
packedpair::{DefaultFrequencyRank, HeuristicFrequencyRank},
rabinkarp,
},
cow::CowBytes,
memmem::searcher::{PrefilterState, Searcher, SearcherRev},
};
mod searcher;
/// Returns an iterator over all non-overlapping occurrences of a substring in
/// a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar foo baz foo";
/// let mut it = memmem::find_iter(haystack, b"foo");
/// assert_eq!(Some(0), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(16), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn find_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
haystack: &'h [u8],
needle: &'n N,
) -> FindIter<'h, 'n> {
FindIter::new(haystack, Finder::new(needle))
}
/// Returns a reverse iterator over all non-overlapping occurrences of a
/// substring in a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar foo baz foo";
/// let mut it = memmem::rfind_iter(haystack, b"foo");
/// assert_eq!(Some(16), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(0), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn rfind_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
haystack: &'h [u8],
needle: &'n N,
) -> FindRevIter<'h, 'n> {
FindRevIter::new(haystack, FinderRev::new(needle))
}
/// Returns the index of the first occurrence of the given needle.
///
/// Note that if you're are searching for the same needle in many different
/// small haystacks, it may be faster to initialize a [`Finder`] once,
/// and reuse it for each search.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), memmem::find(haystack, b"foo"));
/// assert_eq!(Some(4), memmem::find(haystack, b"bar"));
/// assert_eq!(None, memmem::find(haystack, b"quux"));
/// ```
#[inline]
pub fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
if haystack.len() < 64 {
rabinkarp::Finder::new(needle).find(haystack, needle)
} else {
Finder::new(needle).find(haystack)
}
}
/// Returns the index of the last occurrence of the given needle.
///
/// Note that if you're are searching for the same needle in many different
/// small haystacks, it may be faster to initialize a [`FinderRev`] once,
/// and reuse it for each search.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), memmem::rfind(haystack, b"foo"));
/// assert_eq!(Some(4), memmem::rfind(haystack, b"bar"));
/// assert_eq!(Some(8), memmem::rfind(haystack, b"ba"));
/// assert_eq!(None, memmem::rfind(haystack, b"quux"));
/// ```
#[inline]
pub fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
if haystack.len() < 64 {
rabinkarp::FinderRev::new(needle).rfind(haystack, needle)
} else {
FinderRev::new(needle).rfind(haystack)
}
}
/// An iterator over non-overlapping substring matches.
///
/// Matches are reported by the byte offset at which they begin.
///
/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
/// needle.
#[derive(Debug)]
pub struct FindIter<'h, 'n> {
haystack: &'h [u8],
prestate: PrefilterState,
finder: Finder<'n>,
pos: usize,
}
impl<'h, 'n> FindIter<'h, 'n> {
#[inline(always)]
pub(crate) fn new(
haystack: &'h [u8],
finder: Finder<'n>,
) -> FindIter<'h, 'n> {
let prestate = PrefilterState::new();
FindIter { haystack, prestate, finder, pos: 0 }
}
/// Convert this iterator into its owned variant, such that it no longer
/// borrows the finder and needle.
///
/// If this is already an owned iterator, then this is a no-op. Otherwise,
/// this copies the needle.
///
/// This is only available when the `alloc` feature is enabled.
#[cfg(feature = "alloc")]
#[inline]
pub fn into_owned(self) -> FindIter<'h, 'static> {
FindIter {
haystack: self.haystack,
prestate: self.prestate,
finder: self.finder.into_owned(),
pos: self.pos,
}
}
}
impl<'h, 'n> Iterator for FindIter<'h, 'n> {
type Item = usize;
fn next(&mut self) -> Option<usize> {
let needle = self.finder.needle();
let haystack = self.haystack.get(self.pos..)?;
let idx =
self.finder.searcher.find(&mut self.prestate, haystack, needle)?;
let pos = self.pos + idx;
self.pos = pos + needle.len().max(1);
Some(pos)
}
fn size_hint(&self) -> (usize, Option<usize>) {
// The largest possible number of non-overlapping matches is the
// quotient of the haystack and the needle (or the length of the
// haystack, if the needle is empty)
match self.haystack.len().checked_sub(self.pos) {
None => (0, Some(0)),
Some(haystack_len) => match self.finder.needle().len() {
// Empty needles always succeed and match at every point
// (including the very end)
0 => (
haystack_len.saturating_add(1),
haystack_len.checked_add(1),
),
needle_len => (0, Some(haystack_len / needle_len)),
},
}
}
}
/// An iterator over non-overlapping substring matches in reverse.
///
/// Matches are reported by the byte offset at which they begin.
///
/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
/// needle.
#[derive(Debug)]
pub struct FindRevIter<'h, 'n> {
haystack: &'h [u8],
finder: FinderRev<'n>,
/// When searching with an empty needle, this gets set to `None` after
/// we've yielded the last element at `0`.
pos: Option<usize>,
}
impl<'h, 'n> FindRevIter<'h, 'n> {
#[inline(always)]
pub(crate) fn new(
haystack: &'h [u8],
finder: FinderRev<'n>,
) -> FindRevIter<'h, 'n> {
let pos = Some(haystack.len());
FindRevIter { haystack, finder, pos }
}
/// Convert this iterator into its owned variant, such that it no longer
/// borrows the finder and needle.
///
/// If this is already an owned iterator, then this is a no-op. Otherwise,
/// this copies the needle.
///
/// This is only available when the `std` feature is enabled.
#[cfg(feature = "alloc")]
#[inline]
pub fn into_owned(self) -> FindRevIter<'h, 'static> {
FindRevIter {
haystack: self.haystack,
finder: self.finder.into_owned(),
pos: self.pos,
}
}
}
impl<'h, 'n> Iterator for FindRevIter<'h, 'n> {
type Item = usize;
fn next(&mut self) -> Option<usize> {
let pos = match self.pos {
None => return None,
Some(pos) => pos,
};
let result = self.finder.rfind(&self.haystack[..pos]);
match result {
None => None,
Some(i) => {
if pos == i {
self.pos = pos.checked_sub(1);
} else {
self.pos = Some(i);
}
Some(i)
}
}
}
}
/// A single substring searcher fixed to a particular needle.
///
/// The purpose of this type is to permit callers to construct a substring
/// searcher that can be used to search haystacks without the overhead of
/// constructing the searcher in the first place. This is a somewhat niche
/// concern when it's necessary to re-use the same needle to search multiple
/// different haystacks with as little overhead as possible. In general, using
/// [`find`] is good enough, but `Finder` is useful when you can meaningfully
/// observe searcher construction time in a profile.
///
/// When the `std` feature is enabled, then this type has an `into_owned`
/// version which permits building a `Finder` that is not connected to
/// the lifetime of its needle.
#[derive(Clone, Debug)]
pub struct Finder<'n> {
needle: CowBytes<'n>,
searcher: Searcher,
}
impl<'n> Finder<'n> {
/// Create a new finder for the given needle.
#[inline]
pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> Finder<'n> {
FinderBuilder::new().build_forward(needle)
}
/// Returns the index of the first occurrence of this needle in the given
/// haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem::Finder;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), Finder::new("foo").find(haystack));
/// assert_eq!(Some(4), Finder::new("bar").find(haystack));
/// assert_eq!(None, Finder::new("quux").find(haystack));
/// ```
#[inline]
pub fn find(&self, haystack: &[u8]) -> Option<usize> {
let mut prestate = PrefilterState::new();
let needle = self.needle.as_slice();
self.searcher.find(&mut prestate, haystack, needle)
}
/// Returns an iterator over all occurrences of a substring in a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem::Finder;
///
/// let haystack = b"foo bar foo baz foo";
/// let finder = Finder::new(b"foo");
/// let mut it = finder.find_iter(haystack);
/// assert_eq!(Some(0), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(16), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn find_iter<'a, 'h>(
&'a self,
haystack: &'h [u8],
) -> FindIter<'h, 'a> {
FindIter::new(haystack, self.as_ref())
}
/// Convert this finder into its owned variant, such that it no longer
/// borrows the needle.
///
/// If this is already an owned finder, then this is a no-op. Otherwise,
/// this copies the needle.
///
/// This is only available when the `alloc` feature is enabled.
#[cfg(feature = "alloc")]
#[inline]
pub fn into_owned(self) -> Finder<'static> {
Finder {
needle: self.needle.into_owned(),
searcher: self.searcher.clone(),
}
}
/// Convert this finder into its borrowed variant.
///
/// This is primarily useful if your finder is owned and you'd like to
/// store its borrowed variant in some intermediate data structure.
///
/// Note that the lifetime parameter of the returned finder is tied to the
/// lifetime of `self`, and may be shorter than the `'n` lifetime of the
/// needle itself. Namely, a finder's needle can be either borrowed or
/// owned, so the lifetime of the needle returned must necessarily be the
/// shorter of the two.
#[inline]
pub fn as_ref(&self) -> Finder<'_> {
Finder {
needle: CowBytes::new(self.needle()),
searcher: self.searcher.clone(),
}
}
/// Returns the needle that this finder searches for.
///
/// Note that the lifetime of the needle returned is tied to the lifetime
/// of the finder, and may be shorter than the `'n` lifetime. Namely, a
/// finder's needle can be either borrowed or owned, so the lifetime of the
/// needle returned must necessarily be the shorter of the two.
#[inline]
pub fn needle(&self) -> &[u8] {
self.needle.as_slice()
}
}
/// A single substring reverse searcher fixed to a particular needle.
///
/// The purpose of this type is to permit callers to construct a substring
/// searcher that can be used to search haystacks without the overhead of
/// constructing the searcher in the first place. This is a somewhat niche
/// concern when it's necessary to re-use the same needle to search multiple
/// different haystacks with as little overhead as possible. In general,
/// using [`rfind`] is good enough, but `FinderRev` is useful when you can
/// meaningfully observe searcher construction time in a profile.
///
/// When the `std` feature is enabled, then this type has an `into_owned`
/// version which permits building a `FinderRev` that is not connected to
/// the lifetime of its needle.
#[derive(Clone, Debug)]
pub struct FinderRev<'n> {
needle: CowBytes<'n>,
searcher: SearcherRev,
}
impl<'n> FinderRev<'n> {
/// Create a new reverse finder for the given needle.
#[inline]
pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> FinderRev<'n> {
FinderBuilder::new().build_reverse(needle)
}
/// Returns the index of the last occurrence of this needle in the given
/// haystack.
///
/// The haystack may be any type that can be cheaply converted into a
/// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem::FinderRev;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), FinderRev::new("foo").rfind(haystack));
/// assert_eq!(Some(4), FinderRev::new("bar").rfind(haystack));
/// assert_eq!(None, FinderRev::new("quux").rfind(haystack));
/// ```
pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> {
self.searcher.rfind(haystack.as_ref(), self.needle.as_slice())
}
/// Returns a reverse iterator over all occurrences of a substring in a
/// haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem::FinderRev;
///
/// let haystack = b"foo bar foo baz foo";
/// let finder = FinderRev::new(b"foo");
/// let mut it = finder.rfind_iter(haystack);
/// assert_eq!(Some(16), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(0), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn rfind_iter<'a, 'h>(
&'a self,
haystack: &'h [u8],
) -> FindRevIter<'h, 'a> {
FindRevIter::new(haystack, self.as_ref())
}
/// Convert this finder into its owned variant, such that it no longer
/// borrows the needle.
///
/// If this is already an owned finder, then this is a no-op. Otherwise,
/// this copies the needle.
///
/// This is only available when the `std` feature is enabled.
#[cfg(feature = "alloc")]
#[inline]
pub fn into_owned(self) -> FinderRev<'static> {
FinderRev {
needle: self.needle.into_owned(),
searcher: self.searcher.clone(),
}
}
/// Convert this finder into its borrowed variant.
///
/// This is primarily useful if your finder is owned and you'd like to
/// store its borrowed variant in some intermediate data structure.
///
/// Note that the lifetime parameter of the returned finder is tied to the
/// lifetime of `self`, and may be shorter than the `'n` lifetime of the
/// needle itself. Namely, a finder's needle can be either borrowed or
/// owned, so the lifetime of the needle returned must necessarily be the
/// shorter of the two.
#[inline]
pub fn as_ref(&self) -> FinderRev<'_> {
FinderRev {
needle: CowBytes::new(self.needle()),
searcher: self.searcher.clone(),
}
}
/// Returns the needle that this finder searches for.
///
/// Note that the lifetime of the needle returned is tied to the lifetime
/// of the finder, and may be shorter than the `'n` lifetime. Namely, a
/// finder's needle can be either borrowed or owned, so the lifetime of the
/// needle returned must necessarily be the shorter of the two.
#[inline]
pub fn needle(&self) -> &[u8] {
self.needle.as_slice()
}
}
/// A builder for constructing non-default forward or reverse memmem finders.
///
/// A builder is primarily useful for configuring a substring searcher.
/// Currently, the only configuration exposed is the ability to disable
/// heuristic prefilters used to speed up certain searches.
#[derive(Clone, Debug, Default)]
pub struct FinderBuilder {
prefilter: Prefilter,
}
impl FinderBuilder {
/// Create a new finder builder with default settings.
pub fn new() -> FinderBuilder {
FinderBuilder::default()
}
/// Build a forward finder using the given needle from the current
/// settings.
pub fn build_forward<'n, B: ?Sized + AsRef<[u8]>>(
&self,
needle: &'n B,
) -> Finder<'n> {
self.build_forward_with_ranker(DefaultFrequencyRank, needle)
}
/// Build a forward finder using the given needle and a custom heuristic for
/// determining the frequency of a given byte in the dataset.
/// See [`HeuristicFrequencyRank`] for more details.
pub fn build_forward_with_ranker<
'n,
R: HeuristicFrequencyRank,
B: ?Sized + AsRef<[u8]>,
>(
&self,
ranker: R,
needle: &'n B,
) -> Finder<'n> {
let needle = needle.as_ref();
Finder {
needle: CowBytes::new(needle),
searcher: Searcher::new(self.prefilter, ranker, needle),
}
}
/// Build a reverse finder using the given needle from the current
/// settings.
pub fn build_reverse<'n, B: ?Sized + AsRef<[u8]>>(
&self,
needle: &'n B,
) -> FinderRev<'n> {
let needle = needle.as_ref();
FinderRev {
needle: CowBytes::new(needle),
searcher: SearcherRev::new(needle),
}
}
/// Configure the prefilter setting for the finder.
///
/// See the documentation for [`Prefilter`] for more discussion on why
/// you might want to configure this.
pub fn prefilter(&mut self, prefilter: Prefilter) -> &mut FinderBuilder {
self.prefilter = prefilter;
self
}
}
#[cfg(test)]
mod tests {
use super::*;
define_substring_forward_quickcheck!(|h, n| Some(Finder::new(n).find(h)));
define_substring_reverse_quickcheck!(|h, n| Some(
FinderRev::new(n).rfind(h)
));
#[test]
fn forward() {
crate::tests::substring::Runner::new()
.fwd(|h, n| Some(Finder::new(n).find(h)))
.run();
}
#[test]
fn reverse() {
crate::tests::substring::Runner::new()
.rev(|h, n| Some(FinderRev::new(n).rfind(h)))
.run();
}
}