memchr/arch/all/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/*!
Contains architecture independent routines.
These routines are often used as a "fallback" implementation when the more
specialized architecture dependent routines are unavailable.
*/
pub mod memchr;
pub mod packedpair;
pub mod rabinkarp;
#[cfg(feature = "alloc")]
pub mod shiftor;
pub mod twoway;
/// Returns true if and only if `needle` is a prefix of `haystack`.
///
/// This uses a latency optimized variant of `memcmp` internally which *might*
/// make this faster for very short strings.
///
/// # Inlining
///
/// This routine is marked `inline(always)`. If you want to call this function
/// in a way that is not always inlined, you'll need to wrap a call to it in
/// another function that is marked as `inline(never)` or just `inline`.
#[inline(always)]
pub fn is_prefix(haystack: &[u8], needle: &[u8]) -> bool {
needle.len() <= haystack.len()
&& is_equal(&haystack[..needle.len()], needle)
}
/// Returns true if and only if `needle` is a suffix of `haystack`.
///
/// This uses a latency optimized variant of `memcmp` internally which *might*
/// make this faster for very short strings.
///
/// # Inlining
///
/// This routine is marked `inline(always)`. If you want to call this function
/// in a way that is not always inlined, you'll need to wrap a call to it in
/// another function that is marked as `inline(never)` or just `inline`.
#[inline(always)]
pub fn is_suffix(haystack: &[u8], needle: &[u8]) -> bool {
needle.len() <= haystack.len()
&& is_equal(&haystack[haystack.len() - needle.len()..], needle)
}
/// Compare corresponding bytes in `x` and `y` for equality.
///
/// That is, this returns true if and only if `x.len() == y.len()` and
/// `x[i] == y[i]` for all `0 <= i < x.len()`.
///
/// # Inlining
///
/// This routine is marked `inline(always)`. If you want to call this function
/// in a way that is not always inlined, you'll need to wrap a call to it in
/// another function that is marked as `inline(never)` or just `inline`.
///
/// # Motivation
///
/// Why not use slice equality instead? Well, slice equality usually results in
/// a call out to the current platform's `libc` which might not be inlineable
/// or have other overhead. This routine isn't guaranteed to be a win, but it
/// might be in some cases.
#[inline(always)]
pub fn is_equal(x: &[u8], y: &[u8]) -> bool {
if x.len() != y.len() {
return false;
}
// SAFETY: Our pointers are derived directly from borrowed slices which
// uphold all of our safety guarantees except for length. We account for
// length with the check above.
unsafe { is_equal_raw(x.as_ptr(), y.as_ptr(), x.len()) }
}
/// Compare `n` bytes at the given pointers for equality.
///
/// This returns true if and only if `*x.add(i) == *y.add(i)` for all
/// `0 <= i < n`.
///
/// # Inlining
///
/// This routine is marked `inline(always)`. If you want to call this function
/// in a way that is not always inlined, you'll need to wrap a call to it in
/// another function that is marked as `inline(never)` or just `inline`.
///
/// # Motivation
///
/// Why not use slice equality instead? Well, slice equality usually results in
/// a call out to the current platform's `libc` which might not be inlineable
/// or have other overhead. This routine isn't guaranteed to be a win, but it
/// might be in some cases.
///
/// # Safety
///
/// * Both `x` and `y` must be valid for reads of up to `n` bytes.
/// * Both `x` and `y` must point to an initialized value.
/// * Both `x` and `y` must each point to an allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object. `x` and `y` do not need to point to the same allocated
/// object, but they may.
/// * Both `x` and `y` must be _derived from_ a pointer to their respective
/// allocated objects.
/// * The distance between `x` and `x+n` must not overflow `isize`. Similarly
/// for `y` and `y+n`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub unsafe fn is_equal_raw(
mut x: *const u8,
mut y: *const u8,
n: usize,
) -> bool {
// If we don't have enough bytes to do 4-byte at a time loads, then
// handle each possible length specially. Note that I used to have a
// byte-at-a-time loop here and that turned out to be quite a bit slower
// for the memmem/pathological/defeat-simple-vector-alphabet benchmark.
if n < 4 {
return match n {
0 => true,
1 => x.read() == y.read(),
2 => {
x.cast::<u16>().read_unaligned()
== y.cast::<u16>().read_unaligned()
}
// I also tried copy_nonoverlapping here and it looks like the
// codegen is the same.
3 => x.cast::<[u8; 3]>().read() == y.cast::<[u8; 3]>().read(),
_ => unreachable!(),
};
}
// When we have 4 or more bytes to compare, then proceed in chunks of 4 at
// a time using unaligned loads.
//
// Also, why do 4 byte loads instead of, say, 8 byte loads? The reason is
// that this particular version of memcmp is likely to be called with tiny
// needles. That means that if we do 8 byte loads, then a higher proportion
// of memcmp calls will use the slower variant above. With that said, this
// is a hypothesis and is only loosely supported by benchmarks. There's
// likely some improvement that could be made here. The main thing here
// though is to optimize for latency, not throughput.
// SAFETY: The caller is responsible for ensuring the pointers we get are
// valid and readable for at least `n` bytes. We also do unaligned loads,
// so there's no need to ensure we're aligned. (This is justified by this
// routine being specifically for short strings.)
let xend = x.add(n.wrapping_sub(4));
let yend = y.add(n.wrapping_sub(4));
while x < xend {
let vx = x.cast::<u32>().read_unaligned();
let vy = y.cast::<u32>().read_unaligned();
if vx != vy {
return false;
}
x = x.add(4);
y = y.add(4);
}
let vx = xend.cast::<u32>().read_unaligned();
let vy = yend.cast::<u32>().read_unaligned();
vx == vy
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn equals_different_lengths() {
assert!(!is_equal(b"", b"a"));
assert!(!is_equal(b"a", b""));
assert!(!is_equal(b"ab", b"a"));
assert!(!is_equal(b"a", b"ab"));
}
#[test]
fn equals_mismatch() {
let one_mismatch = [
(&b"a"[..], &b"x"[..]),
(&b"ab"[..], &b"ax"[..]),
(&b"abc"[..], &b"abx"[..]),
(&b"abcd"[..], &b"abcx"[..]),
(&b"abcde"[..], &b"abcdx"[..]),
(&b"abcdef"[..], &b"abcdex"[..]),
(&b"abcdefg"[..], &b"abcdefx"[..]),
(&b"abcdefgh"[..], &b"abcdefgx"[..]),
(&b"abcdefghi"[..], &b"abcdefghx"[..]),
(&b"abcdefghij"[..], &b"abcdefghix"[..]),
(&b"abcdefghijk"[..], &b"abcdefghijx"[..]),
(&b"abcdefghijkl"[..], &b"abcdefghijkx"[..]),
(&b"abcdefghijklm"[..], &b"abcdefghijklx"[..]),
(&b"abcdefghijklmn"[..], &b"abcdefghijklmx"[..]),
];
for (x, y) in one_mismatch {
assert_eq!(x.len(), y.len(), "lengths should match");
assert!(!is_equal(x, y));
assert!(!is_equal(y, x));
}
}
#[test]
fn equals_yes() {
assert!(is_equal(b"", b""));
assert!(is_equal(b"a", b"a"));
assert!(is_equal(b"ab", b"ab"));
assert!(is_equal(b"abc", b"abc"));
assert!(is_equal(b"abcd", b"abcd"));
assert!(is_equal(b"abcde", b"abcde"));
assert!(is_equal(b"abcdef", b"abcdef"));
assert!(is_equal(b"abcdefg", b"abcdefg"));
assert!(is_equal(b"abcdefgh", b"abcdefgh"));
assert!(is_equal(b"abcdefghi", b"abcdefghi"));
}
#[test]
fn prefix() {
assert!(is_prefix(b"", b""));
assert!(is_prefix(b"a", b""));
assert!(is_prefix(b"ab", b""));
assert!(is_prefix(b"foo", b"foo"));
assert!(is_prefix(b"foobar", b"foo"));
assert!(!is_prefix(b"foo", b"fob"));
assert!(!is_prefix(b"foobar", b"fob"));
}
#[test]
fn suffix() {
assert!(is_suffix(b"", b""));
assert!(is_suffix(b"a", b""));
assert!(is_suffix(b"ab", b""));
assert!(is_suffix(b"foo", b"foo"));
assert!(is_suffix(b"foobar", b"bar"));
assert!(!is_suffix(b"foo", b"goo"));
assert!(!is_suffix(b"foobar", b"gar"));
}
}