fastrand/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
//! A simple and fast random number generator.
//!
//! The implementation uses [Wyrand](https://github.com/wangyi-fudan/wyhash), a simple and fast
//! generator but **not** cryptographically secure.
//!
//! # Examples
//!
//! Flip a coin:
//!
//! ```
//! if fastrand::bool() {
//!     println!("heads");
//! } else {
//!     println!("tails");
//! }
//! ```
//!
//! Generate a random `i32`:
//!
//! ```
//! let num = fastrand::i32(..);
//! ```
//!
//! Choose a random element in an array:
//!
//! ```
//! let v = vec![1, 2, 3, 4, 5];
//! let i = fastrand::usize(..v.len());
//! let elem = v[i];
//! ```
//!
//! Sample values from an array with `O(n)` complexity (`n` is the length of array):
//!
//! ```
//! fastrand::choose_multiple(vec![1, 4, 5].iter(), 2);
//! fastrand::choose_multiple(0..20, 12);
//! ```
//!
//!
//! Shuffle an array:
//!
//! ```
//! let mut v = vec![1, 2, 3, 4, 5];
//! fastrand::shuffle(&mut v);
//! ```
//!
//! Generate a random [`Vec`] or [`String`]:
//!
//! ```
//! use std::iter::repeat_with;
//!
//! let v: Vec<i32> = repeat_with(|| fastrand::i32(..)).take(10).collect();
//! let s: String = repeat_with(fastrand::alphanumeric).take(10).collect();
//! ```
//!
//! To get reproducible results on every run, initialize the generator with a seed:
//!
//! ```
//! // Pick an arbitrary number as seed.
//! fastrand::seed(7);
//!
//! // Now this prints the same number on every run:
//! println!("{}", fastrand::u32(..));
//! ```
//!
//! To be more efficient, create a new [`Rng`] instance instead of using the thread-local
//! generator:
//!
//! ```
//! use std::iter::repeat_with;
//!
//! let mut rng = fastrand::Rng::new();
//! let mut bytes: Vec<u8> = repeat_with(|| rng.u8(..)).take(10_000).collect();
//! ```
//!
//! This crate aims to expose a core set of useful randomness primitives. For more niche algorithms,
//! consider using the [`fastrand-contrib`] crate alongside this one.
//!
//! # Features
//!
//! - `std` (enabled by default): Enables the `std` library. This is required for the global
//!   generator and global entropy. Without this feature, [`Rng`] can only be instantiated using
//!   the [`with_seed`](Rng::with_seed) method.
//! - `js`: Assumes that WebAssembly targets are being run in a JavaScript environment. See the
//!   [WebAssembly Notes](#webassembly-notes) section for more information.
//!
//! # WebAssembly Notes
//!
//! For non-WASI WASM targets, there is additional sublety to consider when utilizing the global RNG.
//! By default, `std` targets will use entropy sources in the standard library to seed the global RNG.
//! However, these sources are not available by default on WASM targets outside of WASI.
//!
//! If the `js` feature is enabled, this crate will assume that it is running in a JavaScript
//! environment. At this point, the [`getrandom`] crate will be used in order to access the available
//! entropy sources and seed the global RNG. If the `js` feature is not enabled, the global RNG will
//! use a predefined seed.
//!
//! [`fastrand-contrib`]: https://crates.io/crates/fastrand-contrib
//! [`getrandom`]: https://crates.io/crates/getrandom

#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![forbid(unsafe_code)]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
#![doc(
    html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]

#[cfg(feature = "alloc")]
extern crate alloc;

use core::convert::{TryFrom, TryInto};
use core::ops::{Bound, RangeBounds};

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
mod global_rng;

#[cfg(feature = "std")]
pub use global_rng::*;

/// A random number generator.
#[derive(Debug, PartialEq, Eq)]
pub struct Rng(u64);

impl Clone for Rng {
    /// Clones the generator by creating a new generator with the same seed.
    fn clone(&self) -> Rng {
        Rng::with_seed(self.0)
    }
}

impl Rng {
    /// Generates a random `u32`.
    #[inline]
    fn gen_u32(&mut self) -> u32 {
        self.gen_u64() as u32
    }

    /// Generates a random `u64`.
    #[inline]
    fn gen_u64(&mut self) -> u64 {
        let s = self.0.wrapping_add(0xA0761D6478BD642F);
        self.0 = s;
        let t = u128::from(s) * u128::from(s ^ 0xE7037ED1A0B428DB);
        (t as u64) ^ (t >> 64) as u64
    }

    /// Generates a random `u128`.
    #[inline]
    fn gen_u128(&mut self) -> u128 {
        (u128::from(self.gen_u64()) << 64) | u128::from(self.gen_u64())
    }

    /// Generates a random `u32` in `0..n`.
    #[inline]
    fn gen_mod_u32(&mut self, n: u32) -> u32 {
        // Adapted from: https://lemire.me/blog/2016/06/30/fast-random-shuffling/
        let mut r = self.gen_u32();
        let mut hi = mul_high_u32(r, n);
        let mut lo = r.wrapping_mul(n);
        if lo < n {
            let t = n.wrapping_neg() % n;
            while lo < t {
                r = self.gen_u32();
                hi = mul_high_u32(r, n);
                lo = r.wrapping_mul(n);
            }
        }
        hi
    }

    /// Generates a random `u64` in `0..n`.
    #[inline]
    fn gen_mod_u64(&mut self, n: u64) -> u64 {
        // Adapted from: https://lemire.me/blog/2016/06/30/fast-random-shuffling/
        let mut r = self.gen_u64();
        let mut hi = mul_high_u64(r, n);
        let mut lo = r.wrapping_mul(n);
        if lo < n {
            let t = n.wrapping_neg() % n;
            while lo < t {
                r = self.gen_u64();
                hi = mul_high_u64(r, n);
                lo = r.wrapping_mul(n);
            }
        }
        hi
    }

    /// Generates a random `u128` in `0..n`.
    #[inline]
    fn gen_mod_u128(&mut self, n: u128) -> u128 {
        // Adapted from: https://lemire.me/blog/2016/06/30/fast-random-shuffling/
        let mut r = self.gen_u128();
        let mut hi = mul_high_u128(r, n);
        let mut lo = r.wrapping_mul(n);
        if lo < n {
            let t = n.wrapping_neg() % n;
            while lo < t {
                r = self.gen_u128();
                hi = mul_high_u128(r, n);
                lo = r.wrapping_mul(n);
            }
        }
        hi
    }
}

/// Computes `(a * b) >> 32`.
#[inline]
fn mul_high_u32(a: u32, b: u32) -> u32 {
    (((a as u64) * (b as u64)) >> 32) as u32
}

/// Computes `(a * b) >> 64`.
#[inline]
fn mul_high_u64(a: u64, b: u64) -> u64 {
    (((a as u128) * (b as u128)) >> 64) as u64
}

/// Computes `(a * b) >> 128`.
#[inline]
fn mul_high_u128(a: u128, b: u128) -> u128 {
    // Adapted from: https://stackoverflow.com/a/28904636
    let a_lo = a as u64 as u128;
    let a_hi = (a >> 64) as u64 as u128;
    let b_lo = b as u64 as u128;
    let b_hi = (b >> 64) as u64 as u128;
    let carry = (a_lo * b_lo) >> 64;
    let carry = ((a_hi * b_lo) as u64 as u128 + (a_lo * b_hi) as u64 as u128 + carry) >> 64;
    a_hi * b_hi + ((a_hi * b_lo) >> 64) + ((a_lo * b_hi) >> 64) + carry
}

macro_rules! rng_integer {
    ($t:tt, $unsigned_t:tt, $gen:tt, $mod:tt, $doc:tt) => {
        #[doc = $doc]
        ///
        /// Panics if the range is empty.
        #[inline]
        pub fn $t(&mut self, range: impl RangeBounds<$t>) -> $t {
            let panic_empty_range = || {
                panic!(
                    "empty range: {:?}..{:?}",
                    range.start_bound(),
                    range.end_bound()
                )
            };

            let low = match range.start_bound() {
                Bound::Unbounded => core::$t::MIN,
                Bound::Included(&x) => x,
                Bound::Excluded(&x) => x.checked_add(1).unwrap_or_else(panic_empty_range),
            };

            let high = match range.end_bound() {
                Bound::Unbounded => core::$t::MAX,
                Bound::Included(&x) => x,
                Bound::Excluded(&x) => x.checked_sub(1).unwrap_or_else(panic_empty_range),
            };

            if low > high {
                panic_empty_range();
            }

            if low == core::$t::MIN && high == core::$t::MAX {
                self.$gen() as $t
            } else {
                let len = high.wrapping_sub(low).wrapping_add(1);
                low.wrapping_add(self.$mod(len as $unsigned_t as _) as $t)
            }
        }
    };
}

impl Rng {
    /// Creates a new random number generator with the initial seed.
    #[inline]
    #[must_use = "this creates a new instance of `Rng`; if you want to initialize the thread-local generator, use `fastrand::seed()` instead"]
    pub fn with_seed(seed: u64) -> Self {
        let mut rng = Rng(0);

        rng.seed(seed);
        rng
    }

    /// Clones the generator by deterministically deriving a new generator based on the initial
    /// seed.
    ///
    /// This function can be used to create a new generator that is a "spinoff" of the old
    /// generator. The new generator will not produce the same sequence of values as the
    /// old generator.
    ///
    /// # Example
    ///
    /// ```
    /// // Seed two generators equally, and clone both of them.
    /// let mut base1 = fastrand::Rng::with_seed(0x4d595df4d0f33173);
    /// base1.bool(); // Use the generator once.
    ///
    /// let mut base2 = fastrand::Rng::with_seed(0x4d595df4d0f33173);
    /// base2.bool(); // Use the generator once.
    ///
    /// let mut rng1 = base1.fork();
    /// let mut rng2 = base2.fork();
    ///
    /// println!("rng1 returns {}", rng1.u32(..));
    /// println!("rng2 returns {}", rng2.u32(..));
    /// ```
    #[inline]
    #[must_use = "this creates a new instance of `Rng`"]
    pub fn fork(&mut self) -> Self {
        Rng::with_seed(self.gen_u64())
    }

    /// Generates a random `char` in ranges a-z and A-Z.
    #[inline]
    pub fn alphabetic(&mut self) -> char {
        const CHARS: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
        *self.choice(CHARS).unwrap() as char
    }

    /// Generates a random `char` in ranges a-z, A-Z and 0-9.
    #[inline]
    pub fn alphanumeric(&mut self) -> char {
        const CHARS: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
        *self.choice(CHARS).unwrap() as char
    }

    /// Generates a random `bool`.
    #[inline]
    pub fn bool(&mut self) -> bool {
        self.u8(..) % 2 == 0
    }

    /// Generates a random digit in the given `base`.
    ///
    /// Digits are represented by `char`s in ranges 0-9 and a-z.
    ///
    /// Panics if the base is zero or greater than 36.
    #[inline]
    pub fn digit(&mut self, base: u32) -> char {
        if base == 0 {
            panic!("base cannot be zero");
        }
        if base > 36 {
            panic!("base cannot be larger than 36");
        }
        let num = self.u8(..base as u8);
        if num < 10 {
            (b'0' + num) as char
        } else {
            (b'a' + num - 10) as char
        }
    }

    /// Generates a random `f32` in range `0..1`.
    pub fn f32(&mut self) -> f32 {
        let b = 32;
        let f = core::f32::MANTISSA_DIGITS - 1;
        f32::from_bits((1 << (b - 2)) - (1 << f) + (self.u32(..) >> (b - f))) - 1.0
    }

    /// Generates a random `f64` in range `0..1`.
    pub fn f64(&mut self) -> f64 {
        let b = 64;
        let f = core::f64::MANTISSA_DIGITS - 1;
        f64::from_bits((1 << (b - 2)) - (1 << f) + (self.u64(..) >> (b - f))) - 1.0
    }

    /// Collects `amount` values at random from the iterator into a vector.
    ///
    /// The length of the returned vector equals `amount` unless the iterator
    /// contains insufficient elements, in which case it equals the number of
    /// elements available.
    ///
    /// Complexity is `O(n)` where `n` is the length of the iterator.
    #[cfg(feature = "alloc")]
    #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
    pub fn choose_multiple<T: Iterator>(&mut self, mut source: T, amount: usize) -> Vec<T::Item> {
        // Adapted from: https://docs.rs/rand/latest/rand/seq/trait.IteratorRandom.html#method.choose_multiple
        let mut reservoir = Vec::with_capacity(amount);

        reservoir.extend(source.by_ref().take(amount));

        // Continue unless the iterator was exhausted
        //
        // note: this prevents iterators that "restart" from causing problems.
        // If the iterator stops once, then so do we.
        if reservoir.len() == amount {
            for (i, elem) in source.enumerate() {
                let end = i + 1 + amount;
                let k = self.usize(0..end);
                if let Some(slot) = reservoir.get_mut(k) {
                    *slot = elem;
                }
            }
        } else {
            // If less than one third of the `Vec` was used, reallocate
            // so that the unused space is not wasted. There is a corner
            // case where `amount` was much less than `self.len()`.
            if reservoir.capacity() > 3 * reservoir.len() {
                reservoir.shrink_to_fit();
            }
        }
        reservoir
    }

    rng_integer!(
        i8,
        u8,
        gen_u32,
        gen_mod_u32,
        "Generates a random `i8` in the given range."
    );

    rng_integer!(
        i16,
        u16,
        gen_u32,
        gen_mod_u32,
        "Generates a random `i16` in the given range."
    );

    rng_integer!(
        i32,
        u32,
        gen_u32,
        gen_mod_u32,
        "Generates a random `i32` in the given range."
    );

    rng_integer!(
        i64,
        u64,
        gen_u64,
        gen_mod_u64,
        "Generates a random `i64` in the given range."
    );

    rng_integer!(
        i128,
        u128,
        gen_u128,
        gen_mod_u128,
        "Generates a random `i128` in the given range."
    );

    #[cfg(target_pointer_width = "16")]
    rng_integer!(
        isize,
        usize,
        gen_u32,
        gen_mod_u32,
        "Generates a random `isize` in the given range."
    );
    #[cfg(target_pointer_width = "32")]
    rng_integer!(
        isize,
        usize,
        gen_u32,
        gen_mod_u32,
        "Generates a random `isize` in the given range."
    );
    #[cfg(target_pointer_width = "64")]
    rng_integer!(
        isize,
        usize,
        gen_u64,
        gen_mod_u64,
        "Generates a random `isize` in the given range."
    );

    /// Generates a random `char` in range a-z.
    #[inline]
    pub fn lowercase(&mut self) -> char {
        const CHARS: &[u8] = b"abcdefghijklmnopqrstuvwxyz";
        *self.choice(CHARS).unwrap() as char
    }

    /// Initializes this generator with the given seed.
    #[inline]
    pub fn seed(&mut self, seed: u64) {
        self.0 = seed;
    }

    /// Gives back **current** seed that is being held by this generator.
    #[inline]
    pub fn get_seed(&self) -> u64 {
        self.0
    }

    /// Choose an item from an iterator at random.
    ///
    /// This function may have an unexpected result if the `len()` property of the
    /// iterator does not match the actual number of items in the iterator. If
    /// the iterator is empty, this returns `None`.
    #[inline]
    pub fn choice<I>(&mut self, iter: I) -> Option<I::Item>
    where
        I: IntoIterator,
        I::IntoIter: ExactSizeIterator,
    {
        let mut iter = iter.into_iter();

        // Get the item at a random index.
        let len = iter.len();
        if len == 0 {
            return None;
        }
        let index = self.usize(0..len);

        iter.nth(index)
    }

    /// Shuffles a slice randomly.
    #[inline]
    pub fn shuffle<T>(&mut self, slice: &mut [T]) {
        for i in 1..slice.len() {
            slice.swap(i, self.usize(..=i));
        }
    }

    /// Fill a byte slice with random data.
    #[inline]
    pub fn fill(&mut self, slice: &mut [u8]) {
        // We fill the slice by chunks of 8 bytes, or one block of
        // WyRand output per new state.
        let mut chunks = slice.chunks_exact_mut(core::mem::size_of::<u64>());
        for chunk in chunks.by_ref() {
            let n = self.gen_u64().to_ne_bytes();
            // Safe because the chunks are always 8 bytes exactly.
            chunk.copy_from_slice(&n);
        }

        let remainder = chunks.into_remainder();

        // Any remainder will always be less than 8 bytes.
        if !remainder.is_empty() {
            // Generate one last block of 8 bytes of entropy
            let n = self.gen_u64().to_ne_bytes();

            // Use the remaining length to copy from block
            remainder.copy_from_slice(&n[..remainder.len()]);
        }
    }

    rng_integer!(
        u8,
        u8,
        gen_u32,
        gen_mod_u32,
        "Generates a random `u8` in the given range."
    );

    rng_integer!(
        u16,
        u16,
        gen_u32,
        gen_mod_u32,
        "Generates a random `u16` in the given range."
    );

    rng_integer!(
        u32,
        u32,
        gen_u32,
        gen_mod_u32,
        "Generates a random `u32` in the given range."
    );

    rng_integer!(
        u64,
        u64,
        gen_u64,
        gen_mod_u64,
        "Generates a random `u64` in the given range."
    );

    rng_integer!(
        u128,
        u128,
        gen_u128,
        gen_mod_u128,
        "Generates a random `u128` in the given range."
    );

    #[cfg(target_pointer_width = "16")]
    rng_integer!(
        usize,
        usize,
        gen_u32,
        gen_mod_u32,
        "Generates a random `usize` in the given range."
    );
    #[cfg(target_pointer_width = "32")]
    rng_integer!(
        usize,
        usize,
        gen_u32,
        gen_mod_u32,
        "Generates a random `usize` in the given range."
    );
    #[cfg(target_pointer_width = "64")]
    rng_integer!(
        usize,
        usize,
        gen_u64,
        gen_mod_u64,
        "Generates a random `usize` in the given range."
    );
    #[cfg(target_pointer_width = "128")]
    rng_integer!(
        usize,
        usize,
        gen_u128,
        gen_mod_u128,
        "Generates a random `usize` in the given range."
    );

    /// Generates a random `char` in range A-Z.
    #[inline]
    pub fn uppercase(&mut self) -> char {
        const CHARS: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
        *self.choice(CHARS).unwrap() as char
    }

    /// Generates a random `char` in the given range.
    ///
    /// Panics if the range is empty.
    #[inline]
    pub fn char(&mut self, range: impl RangeBounds<char>) -> char {
        let panic_empty_range = || {
            panic!(
                "empty range: {:?}..{:?}",
                range.start_bound(),
                range.end_bound()
            )
        };

        let surrogate_start = 0xd800u32;
        let surrogate_len = 0x800u32;

        let low = match range.start_bound() {
            Bound::Unbounded => 0u8 as char,
            Bound::Included(&x) => x,
            Bound::Excluded(&x) => {
                let scalar = if x as u32 == surrogate_start - 1 {
                    surrogate_start + surrogate_len
                } else {
                    x as u32 + 1
                };
                char::try_from(scalar).unwrap_or_else(|_| panic_empty_range())
            }
        };

        let high = match range.end_bound() {
            Bound::Unbounded => core::char::MAX,
            Bound::Included(&x) => x,
            Bound::Excluded(&x) => {
                let scalar = if x as u32 == surrogate_start + surrogate_len {
                    surrogate_start - 1
                } else {
                    (x as u32).wrapping_sub(1)
                };
                char::try_from(scalar).unwrap_or_else(|_| panic_empty_range())
            }
        };

        if low > high {
            panic_empty_range();
        }

        let gap = if (low as u32) < surrogate_start && (high as u32) >= surrogate_start {
            surrogate_len
        } else {
            0
        };
        let range = high as u32 - low as u32 - gap;
        let mut val = self.u32(0..=range) + low as u32;
        if val >= surrogate_start {
            val += gap;
        }
        val.try_into().unwrap()
    }
}