litrs/integer/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
use std::fmt;
use crate::{
Buffer, ParseError,
err::{perr, ParseErrorKind::*},
parse::{first_byte_or_empty, hex_digit_value},
};
/// An integer literal, e.g. `27`, `0x7F`, `0b101010u8` or `5_000_000i64`.
///
/// An integer literal consists of an optional base prefix (`0b`, `0o`, `0x`),
/// the main part (digits and underscores), and an optional type suffix
/// (e.g. `u64` or `i8`). See [the reference][ref] for more information.
///
/// Note that integer literals are always positive: the grammar does not contain
/// the minus sign at all. The minus sign is just the unary negate operator,
/// not part of the literal. Which is interesting for cases like `- 128i8`:
/// here, the literal itself would overflow the specified type (`i8` cannot
/// represent 128). That's why in rustc, the literal overflow check is
/// performed as a lint after parsing, not during the lexing stage. Similarly,
/// [`IntegerLit::parse`] does not perform an overflow check.
///
/// [ref]: https://doc.rust-lang.org/reference/tokens.html#integer-literals
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[non_exhaustive]
pub struct IntegerLit<B: Buffer> {
base: IntegerBase,
main_part: B,
type_suffix: Option<IntegerType>,
}
/// The bases in which an integer can be specified.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum IntegerBase {
Binary,
Octal,
Decimal,
Hexadecimal,
}
/// All possible integer type suffixes.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum IntegerType {
U8,
U16,
U32,
U64,
U128,
Usize,
I8,
I16,
I32,
I64,
I128,
Isize,
}
impl IntegerBase {
/// Returns the literal prefix that indicates this base, i.e. `"0b"`,
/// `"0o"`, `""` and `"0x"`.
pub fn prefix(self) -> &'static str {
match self {
Self::Binary => "0b",
Self::Octal => "0o",
Self::Decimal => "",
Self::Hexadecimal => "0x",
}
}
}
impl<B: Buffer> IntegerLit<B> {
/// Parses the input as an integer literal. Returns an error if the input is
/// invalid or represents a different kind of literal.
pub fn parse(input: B) -> Result<Self, ParseError> {
match first_byte_or_empty(&input)? {
digit @ b'0'..=b'9' => Self::parse_impl(input, digit),
_ => Err(perr(0, DoesNotStartWithDigit)),
}
}
/// Performs the actual string to int conversion to obtain the integer
/// value. The optional type suffix of the literal **is ignored by this
/// method**. This means `N` does not need to match the type suffix!
///
/// Returns `None` if the literal overflows `N`.
pub fn value<N: FromIntegerLiteral>(&self) -> Option<N> {
let base = match self.base {
IntegerBase::Binary => N::from_small_number(2),
IntegerBase::Octal => N::from_small_number(8),
IntegerBase::Decimal => N::from_small_number(10),
IntegerBase::Hexadecimal => N::from_small_number(16),
};
let mut acc = N::from_small_number(0);
for digit in self.main_part.bytes() {
if digit == b'_' {
continue;
}
// We don't actually need the base here: we already know this main
// part only contains digits valid for the specified base.
let digit = hex_digit_value(digit)
.unwrap_or_else(|| unreachable!("bug: integer main part contains non-digit"));
acc = acc.checked_mul(base)?;
acc = acc.checked_add(N::from_small_number(digit))?;
}
Some(acc)
}
/// The base of this integer literal.
pub fn base(&self) -> IntegerBase {
self.base
}
/// The main part containing the digits and potentially `_`. Do not try to
/// parse this directly as that would ignore the base!
pub fn raw_main_part(&self) -> &str {
&self.main_part
}
/// The type suffix, if specified.
pub fn type_suffix(&self) -> Option<IntegerType> {
self.type_suffix
}
/// Precondition: first byte of string has to be in `b'0'..=b'9'`.
pub(crate) fn parse_impl(input: B, first: u8) -> Result<Self, ParseError> {
// Figure out base and strip prefix base, if it exists.
let (end_prefix, base) = match (first, input.as_bytes().get(1)) {
(b'0', Some(b'b')) => (2, IntegerBase::Binary),
(b'0', Some(b'o')) => (2, IntegerBase::Octal),
(b'0', Some(b'x')) => (2, IntegerBase::Hexadecimal),
// Everything else is treated as decimal. Several cases are caught
// by this:
// - "123"
// - "0"
// - "0u8"
// - "0r" -> this will error later
_ => (0, IntegerBase::Decimal),
};
let without_prefix = &input[end_prefix..];
// Find end of main part.
let end_main = without_prefix.bytes()
.position(|b| !matches!(b, b'0'..=b'9' | b'a'..=b'f' | b'A'..=b'F' | b'_'))
.unwrap_or(without_prefix.len());
let (main_part, type_suffix) = without_prefix.split_at(end_main);
// Check for invalid digits and make sure there is at least one valid digit.
let invalid_digit_pos = match base {
IntegerBase::Binary => main_part.bytes()
.position(|b| !matches!(b, b'0' | b'1' | b'_')),
IntegerBase::Octal => main_part.bytes()
.position(|b| !matches!(b, b'0'..=b'7' | b'_')),
IntegerBase::Decimal => main_part.bytes()
.position(|b| !matches!(b, b'0'..=b'9' | b'_')),
IntegerBase::Hexadecimal => None,
};
if let Some(pos) = invalid_digit_pos {
return Err(perr(end_prefix + pos, InvalidDigit));
}
if main_part.bytes().filter(|&b| b != b'_').count() == 0 {
return Err(perr(end_prefix..end_prefix + end_main, NoDigits));
}
// Parse type suffix
let type_suffix = match type_suffix {
"" => None,
"u8" => Some(IntegerType::U8),
"u16" => Some(IntegerType::U16),
"u32" => Some(IntegerType::U32),
"u64" => Some(IntegerType::U64),
"u128" => Some(IntegerType::U128),
"usize" => Some(IntegerType::Usize),
"i8" => Some(IntegerType::I8),
"i16" => Some(IntegerType::I16),
"i32" => Some(IntegerType::I32),
"i64" => Some(IntegerType::I64),
"i128" => Some(IntegerType::I128),
"isize" => Some(IntegerType::Isize),
_ => return Err(perr(end_main + end_prefix..input.len(), InvalidIntegerTypeSuffix)),
};
Ok(Self {
base,
main_part: input.cut(end_prefix..end_main + end_prefix),
type_suffix,
})
}
}
impl IntegerLit<&str> {
/// Makes a copy of the underlying buffer and returns the owned version of
/// `Self`.
pub fn to_owned(&self) -> IntegerLit<String> {
IntegerLit {
base: self.base,
main_part: self.main_part.to_owned(),
type_suffix: self.type_suffix,
}
}
}
impl<B: Buffer> fmt::Display for IntegerLit<B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let suffix = match self.type_suffix {
None => "",
Some(IntegerType::U8) => "u8",
Some(IntegerType::U16) => "u16",
Some(IntegerType::U32) => "u32",
Some(IntegerType::U64) => "u64",
Some(IntegerType::U128) => "u128",
Some(IntegerType::Usize) => "usize",
Some(IntegerType::I8) => "i8",
Some(IntegerType::I16) => "i16",
Some(IntegerType::I32) => "i32",
Some(IntegerType::I64) => "i64",
Some(IntegerType::I128) => "i128",
Some(IntegerType::Isize) => "isize",
};
write!(f, "{}{}{}", self.base.prefix(), &*self.main_part, suffix)
}
}
/// Integer literal types. *Implementation detail*.
///
/// Implemented for all integer literal types. This trait is sealed and cannot
/// be implemented outside of this crate. The trait's methods are implementation
/// detail of this library and are not subject to semver.
pub trait FromIntegerLiteral: self::sealed::Sealed + Copy {
/// Creates itself from the given number. `n` is guaranteed to be `<= 16`.
#[doc(hidden)]
fn from_small_number(n: u8) -> Self;
#[doc(hidden)]
fn checked_add(self, rhs: Self) -> Option<Self>;
#[doc(hidden)]
fn checked_mul(self, rhs: Self) -> Option<Self>;
#[doc(hidden)]
fn ty() -> IntegerType;
}
macro_rules! impl_from_int_literal {
($( $ty:ty => $variant:ident ,)* ) => {
$(
impl self::sealed::Sealed for $ty {}
impl FromIntegerLiteral for $ty {
fn from_small_number(n: u8) -> Self {
n as Self
}
fn checked_add(self, rhs: Self) -> Option<Self> {
self.checked_add(rhs)
}
fn checked_mul(self, rhs: Self) -> Option<Self> {
self.checked_mul(rhs)
}
fn ty() -> IntegerType {
IntegerType::$variant
}
}
)*
};
}
impl_from_int_literal!(
u8 => U8, u16 => U16, u32 => U32, u64 => U64, u128 => U128, usize => Usize,
i8 => I8, i16 => I16, i32 => I32, i64 => I64, i128 => I128, isize => Isize,
);
mod sealed {
pub trait Sealed {}
}
#[cfg(test)]
mod tests;