minimal_lexical/
num.rs

1//! Utilities for Rust numbers.
2
3#![doc(hidden)]
4
5#[cfg(all(not(feature = "std"), feature = "compact"))]
6use crate::libm::{powd, powf};
7#[cfg(not(feature = "compact"))]
8use crate::table::{SMALL_F32_POW10, SMALL_F64_POW10, SMALL_INT_POW10, SMALL_INT_POW5};
9#[cfg(not(feature = "compact"))]
10use core::hint;
11use core::ops;
12
13/// Generic floating-point type, to be used in generic code for parsing.
14///
15/// Although the trait is part of the public API, the trait provides methods
16/// and constants that are effectively non-public: they may be removed
17/// at any time without any breaking changes.
18pub trait Float:
19    Sized
20    + Copy
21    + PartialEq
22    + PartialOrd
23    + Send
24    + Sync
25    + ops::Add<Output = Self>
26    + ops::AddAssign
27    + ops::Div<Output = Self>
28    + ops::DivAssign
29    + ops::Mul<Output = Self>
30    + ops::MulAssign
31    + ops::Rem<Output = Self>
32    + ops::RemAssign
33    + ops::Sub<Output = Self>
34    + ops::SubAssign
35    + ops::Neg<Output = Self>
36{
37    /// Maximum number of digits that can contribute in the mantissa.
38    ///
39    /// We can exactly represent a float in radix `b` from radix 2 if
40    /// `b` is divisible by 2. This function calculates the exact number of
41    /// digits required to exactly represent that float.
42    ///
43    /// According to the "Handbook of Floating Point Arithmetic",
44    /// for IEEE754, with emin being the min exponent, p2 being the
45    /// precision, and b being the radix, the number of digits follows as:
46    ///
47    /// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋`
48    ///
49    /// For f32, this follows as:
50    ///     emin = -126
51    ///     p2 = 24
52    ///
53    /// For f64, this follows as:
54    ///     emin = -1022
55    ///     p2 = 53
56    ///
57    /// In Python:
58    ///     `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))`
59    ///
60    /// This was used to calculate the maximum number of digits for [2, 36].
61    const MAX_DIGITS: usize;
62
63    // MASKS
64
65    /// Bitmask for the sign bit.
66    const SIGN_MASK: u64;
67    /// Bitmask for the exponent, including the hidden bit.
68    const EXPONENT_MASK: u64;
69    /// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction.
70    const HIDDEN_BIT_MASK: u64;
71    /// Bitmask for the mantissa (fraction), excluding the hidden bit.
72    const MANTISSA_MASK: u64;
73
74    // PROPERTIES
75
76    /// Size of the significand (mantissa) without hidden bit.
77    const MANTISSA_SIZE: i32;
78    /// Bias of the exponet
79    const EXPONENT_BIAS: i32;
80    /// Exponent portion of a denormal float.
81    const DENORMAL_EXPONENT: i32;
82    /// Maximum exponent value in float.
83    const MAX_EXPONENT: i32;
84
85    // ROUNDING
86
87    /// Mask to determine if a full-carry occurred (1 in bit above hidden bit).
88    const CARRY_MASK: u64;
89
90    /// Bias for marking an invalid extended float.
91    // Value is `i16::MIN`, using hard-coded constants for older Rustc versions.
92    const INVALID_FP: i32 = -0x8000;
93
94    // Maximum mantissa for the fast-path (`1 << 53` for f64).
95    const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_SIZE;
96
97    // Largest exponent value `(1 << EXP_BITS) - 1`.
98    const INFINITE_POWER: i32 = Self::MAX_EXPONENT + Self::EXPONENT_BIAS;
99
100    // Round-to-even only happens for negative values of q
101    // when q ≥ −4 in the 64-bit case and when q ≥ −17 in
102    // the 32-bitcase.
103    //
104    // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
105    // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
106    // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
107    //
108    // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
109    // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
110    // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
111    // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
112    // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
113    //
114    // Thus we have that we only need to round ties to even when
115    // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
116    // (in the 32-bit case). In both cases,the power of five(5^|q|)
117    // fits in a 64-bit word.
118    const MIN_EXPONENT_ROUND_TO_EVEN: i32;
119    const MAX_EXPONENT_ROUND_TO_EVEN: i32;
120
121    /// Minimum normal exponent value `-(1 << (EXPONENT_SIZE - 1)) + 1`.
122    const MINIMUM_EXPONENT: i32;
123
124    /// Smallest decimal exponent for a non-zero value.
125    const SMALLEST_POWER_OF_TEN: i32;
126
127    /// Largest decimal exponent for a non-infinite value.
128    const LARGEST_POWER_OF_TEN: i32;
129
130    /// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_SIZE+1)/log2(10)⌋`
131    const MIN_EXPONENT_FAST_PATH: i32;
132
133    /// Maximum exponent that for a fast path case, or `⌊(MANTISSA_SIZE+1)/log2(5)⌋`
134    const MAX_EXPONENT_FAST_PATH: i32;
135
136    /// Maximum exponent that can be represented for a disguised-fast path case.
137    /// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_SIZE+1)/log2(10)⌋`
138    const MAX_EXPONENT_DISGUISED_FAST_PATH: i32;
139
140    /// Convert 64-bit integer to float.
141    fn from_u64(u: u64) -> Self;
142
143    // Re-exported methods from std.
144    fn from_bits(u: u64) -> Self;
145    fn to_bits(self) -> u64;
146
147    /// Get a small power-of-radix for fast-path multiplication.
148    ///
149    /// # Safety
150    ///
151    /// Safe as long as the exponent is smaller than the table size.
152    unsafe fn pow_fast_path(exponent: usize) -> Self;
153
154    /// Get a small, integral power-of-radix for fast-path multiplication.
155    ///
156    /// # Safety
157    ///
158    /// Safe as long as the exponent is smaller than the table size.
159    #[inline(always)]
160    unsafe fn int_pow_fast_path(exponent: usize, radix: u32) -> u64 {
161        // SAFETY: safe as long as the exponent is smaller than the radix table.
162        #[cfg(not(feature = "compact"))]
163        return match radix {
164            5 => unsafe { *SMALL_INT_POW5.get_unchecked(exponent) },
165            10 => unsafe { *SMALL_INT_POW10.get_unchecked(exponent) },
166            _ => unsafe { hint::unreachable_unchecked() },
167        };
168
169        #[cfg(feature = "compact")]
170        return (radix as u64).pow(exponent as u32);
171    }
172
173    /// Returns true if the float is a denormal.
174    #[inline]
175    fn is_denormal(self) -> bool {
176        self.to_bits() & Self::EXPONENT_MASK == 0
177    }
178
179    /// Get exponent component from the float.
180    #[inline]
181    fn exponent(self) -> i32 {
182        if self.is_denormal() {
183            return Self::DENORMAL_EXPONENT;
184        }
185
186        let bits = self.to_bits();
187        let biased_e: i32 = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE) as i32;
188        biased_e - Self::EXPONENT_BIAS
189    }
190
191    /// Get mantissa (significand) component from float.
192    #[inline]
193    fn mantissa(self) -> u64 {
194        let bits = self.to_bits();
195        let s = bits & Self::MANTISSA_MASK;
196        if !self.is_denormal() {
197            s + Self::HIDDEN_BIT_MASK
198        } else {
199            s
200        }
201    }
202}
203
204impl Float for f32 {
205    const MAX_DIGITS: usize = 114;
206    const SIGN_MASK: u64 = 0x80000000;
207    const EXPONENT_MASK: u64 = 0x7F800000;
208    const HIDDEN_BIT_MASK: u64 = 0x00800000;
209    const MANTISSA_MASK: u64 = 0x007FFFFF;
210    const MANTISSA_SIZE: i32 = 23;
211    const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE;
212    const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
213    const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS;
214    const CARRY_MASK: u64 = 0x1000000;
215    const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17;
216    const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10;
217    const MINIMUM_EXPONENT: i32 = -127;
218    const SMALLEST_POWER_OF_TEN: i32 = -65;
219    const LARGEST_POWER_OF_TEN: i32 = 38;
220    const MIN_EXPONENT_FAST_PATH: i32 = -10;
221    const MAX_EXPONENT_FAST_PATH: i32 = 10;
222    const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 17;
223
224    #[inline(always)]
225    unsafe fn pow_fast_path(exponent: usize) -> Self {
226        // SAFETY: safe as long as the exponent is smaller than the radix table.
227        #[cfg(not(feature = "compact"))]
228        return unsafe { *SMALL_F32_POW10.get_unchecked(exponent) };
229
230        #[cfg(feature = "compact")]
231        return powf(10.0f32, exponent as f32);
232    }
233
234    #[inline]
235    fn from_u64(u: u64) -> f32 {
236        u as _
237    }
238
239    #[inline]
240    fn from_bits(u: u64) -> f32 {
241        // Constant is `u32::MAX` for older Rustc versions.
242        debug_assert!(u <= 0xffff_ffff);
243        f32::from_bits(u as u32)
244    }
245
246    #[inline]
247    fn to_bits(self) -> u64 {
248        f32::to_bits(self) as u64
249    }
250}
251
252impl Float for f64 {
253    const MAX_DIGITS: usize = 769;
254    const SIGN_MASK: u64 = 0x8000000000000000;
255    const EXPONENT_MASK: u64 = 0x7FF0000000000000;
256    const HIDDEN_BIT_MASK: u64 = 0x0010000000000000;
257    const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF;
258    const MANTISSA_SIZE: i32 = 52;
259    const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE;
260    const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
261    const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS;
262    const CARRY_MASK: u64 = 0x20000000000000;
263    const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4;
264    const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23;
265    const MINIMUM_EXPONENT: i32 = -1023;
266    const SMALLEST_POWER_OF_TEN: i32 = -342;
267    const LARGEST_POWER_OF_TEN: i32 = 308;
268    const MIN_EXPONENT_FAST_PATH: i32 = -22;
269    const MAX_EXPONENT_FAST_PATH: i32 = 22;
270    const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 37;
271
272    #[inline(always)]
273    unsafe fn pow_fast_path(exponent: usize) -> Self {
274        // SAFETY: safe as long as the exponent is smaller than the radix table.
275        #[cfg(not(feature = "compact"))]
276        return unsafe { *SMALL_F64_POW10.get_unchecked(exponent) };
277
278        #[cfg(feature = "compact")]
279        return powd(10.0f64, exponent as f64);
280    }
281
282    #[inline]
283    fn from_u64(u: u64) -> f64 {
284        u as _
285    }
286
287    #[inline]
288    fn from_bits(u: u64) -> f64 {
289        f64::from_bits(u)
290    }
291
292    #[inline]
293    fn to_bits(self) -> u64 {
294        f64::to_bits(self)
295    }
296}
297
298#[inline(always)]
299#[cfg(all(feature = "std", feature = "compact"))]
300pub fn powf(x: f32, y: f32) -> f32 {
301    x.powf(y)
302}
303
304#[inline(always)]
305#[cfg(all(feature = "std", feature = "compact"))]
306pub fn powd(x: f64, y: f64) -> f64 {
307    x.powf(y)
308}