uuid/lib.rs
1// Copyright 2013-2014 The Rust Project Developers.
2// Copyright 2018 The Uuid Project Developers.
3//
4// See the COPYRIGHT file at the top-level directory of this distribution.
5//
6// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
7// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
8// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
9// option. This file may not be copied, modified, or distributed
10// except according to those terms.
11
12//! Generate and parse universally unique identifiers (UUIDs).
13//!
14//! Here's an example of a UUID:
15//!
16//! ```text
17//! 67e55044-10b1-426f-9247-bb680e5fe0c8
18//! ```
19//!
20//! A UUID is a unique 128-bit value, stored as 16 octets, and regularly
21//! formatted as a hex string in five groups. UUIDs are used to assign unique
22//! identifiers to entities without requiring a central allocating authority.
23//!
24//! They are particularly useful in distributed systems, though can be used in
25//! disparate areas, such as databases and network protocols. Typically a UUID
26//! is displayed in a readable string form as a sequence of hexadecimal digits,
27//! separated into groups by hyphens.
28//!
29//! The uniqueness property is not strictly guaranteed, however for all
30//! practical purposes, it can be assumed that an unintentional collision would
31//! be extremely unlikely.
32//!
33//! UUIDs have a number of standardized encodings that are specified in [RFC 9562](https://www.ietf.org/rfc/rfc9562.html).
34//!
35//! # Getting started
36//!
37//! Add the following to your `Cargo.toml`:
38//!
39//! ```toml
40//! [dependencies.uuid]
41//! version = "1.16.0"
42//! # Lets you generate random UUIDs
43//! features = [
44//! "v4",
45//! ]
46//! ```
47//!
48//! When you want a UUID, you can generate one:
49//!
50//! ```
51//! # fn main() {
52//! # #[cfg(feature = "v4")]
53//! # {
54//! use uuid::Uuid;
55//!
56//! let id = Uuid::new_v4();
57//! # }
58//! # }
59//! ```
60//!
61//! If you have a UUID value, you can use its string literal form inline:
62//!
63//! ```
64//! use uuid::{uuid, Uuid};
65//!
66//! const ID: Uuid = uuid!("67e55044-10b1-426f-9247-bb680e5fe0c8");
67//! ```
68//!
69//! # Working with different UUID versions
70//!
71//! This library supports all standardized methods for generating UUIDs through individual Cargo features.
72//!
73//! By default, this crate depends on nothing but the Rust standard library and can parse and format
74//! UUIDs, but cannot generate them. Depending on the kind of UUID you'd like to work with, there
75//! are Cargo features that enable generating them:
76//!
77//! * `v1` - Version 1 UUIDs using a timestamp and monotonic counter.
78//! * `v3` - Version 3 UUIDs based on the MD5 hash of some data.
79//! * `v4` - Version 4 UUIDs with random data.
80//! * `v5` - Version 5 UUIDs based on the SHA1 hash of some data.
81//! * `v6` - Version 6 UUIDs using a timestamp and monotonic counter.
82//! * `v7` - Version 7 UUIDs using a Unix timestamp.
83//! * `v8` - Version 8 UUIDs using user-defined data.
84//!
85//! This library also includes a [`Builder`] type that can be used to help construct UUIDs of any
86//! version without any additional dependencies or features. It's a lower-level API than [`Uuid`]
87//! that can be used when you need control over implicit requirements on things like a source
88//! of randomness.
89//!
90//! ## Which UUID version should I use?
91//!
92//! If you just want to generate unique identifiers then consider version 4 (`v4`) UUIDs. If you want
93//! to use UUIDs as database keys or need to sort them then consider version 7 (`v7`) UUIDs.
94//! Other versions should generally be avoided unless there's an existing need for them.
95//!
96//! Some UUID versions supersede others. Prefer version 6 over version 1 and version 5 over version 3.
97//!
98//! # Other features
99//!
100//! Other crate features can also be useful beyond the version support:
101//!
102//! * `macro-diagnostics` - enhances the diagnostics of `uuid!` macro.
103//! * `serde` - adds the ability to serialize and deserialize a UUID using
104//! `serde`.
105//! * `borsh` - adds the ability to serialize and deserialize a UUID using
106//! `borsh`.
107//! * `arbitrary` - adds an `Arbitrary` trait implementation to `Uuid` for
108//! fuzzing.
109//! * `fast-rng` - uses a faster algorithm for generating random UUIDs when available.
110//! This feature requires more dependencies to compile, but is just as suitable for
111//! UUIDs as the default algorithm.
112//! * `rng-rand` - forces `rand` as the backend for randomness.
113//! * `rng-getrandom` - forces `getrandom` as the backend for randomness.
114//! * `bytemuck` - adds a `Pod` trait implementation to `Uuid` for byte manipulation
115//!
116//! # Unstable features
117//!
118//! Some features are unstable. They may be incomplete or depend on other
119//! unstable libraries. These include:
120//!
121//! * `zerocopy` - adds support for zero-copy deserialization using the
122//! `zerocopy` library.
123//!
124//! Unstable features may break between minor releases.
125//!
126//! To allow unstable features, you'll need to enable the Cargo feature as
127//! normal, but also pass an additional flag through your environment to opt-in
128//! to unstable `uuid` features:
129//!
130//! ```text
131//! RUSTFLAGS="--cfg uuid_unstable"
132//! ```
133//!
134//! # Building for other targets
135//!
136//! ## WebAssembly
137//!
138//! For WebAssembly, enable the `js` feature:
139//!
140//! ```toml
141//! [dependencies.uuid]
142//! version = "1.16.0"
143//! features = [
144//! "v4",
145//! "v7",
146//! "js",
147//! ]
148//! ```
149//!
150//! ## Embedded
151//!
152//! For embedded targets without the standard library, you'll need to
153//! disable default features when building `uuid`:
154//!
155//! ```toml
156//! [dependencies.uuid]
157//! version = "1.16.0"
158//! default-features = false
159//! ```
160//!
161//! Some additional features are supported in no-std environments:
162//!
163//! * `v1`, `v3`, `v5`, `v6`, and `v8`.
164//! * `serde`.
165//!
166//! If you need to use `v4` or `v7` in a no-std environment, you'll need to
167//! produce random bytes yourself and then pass them to [`Builder::from_random_bytes`]
168//! without enabling the `v4` or `v7` features.
169//!
170//! If you're using `getrandom`, you can specify the `rng-getrandom` or `rng-rand`
171//! features of `uuid` and configure `getrandom`'s provider per its docs. `uuid`
172//! may upgrade its version of `getrandom` in minor releases.
173//!
174//! # Examples
175//!
176//! Parse a UUID given in the simple format and print it as a URN:
177//!
178//! ```
179//! # use uuid::Uuid;
180//! # fn main() -> Result<(), uuid::Error> {
181//! let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
182//!
183//! println!("{}", my_uuid.urn());
184//! # Ok(())
185//! # }
186//! ```
187//!
188//! Generate a random UUID and print it out in hexadecimal form:
189//!
190//! ```
191//! // Note that this requires the `v4` feature to be enabled.
192//! # use uuid::Uuid;
193//! # fn main() {
194//! # #[cfg(feature = "v4")] {
195//! let my_uuid = Uuid::new_v4();
196//!
197//! println!("{}", my_uuid);
198//! # }
199//! # }
200//! ```
201//!
202//! # References
203//!
204//! * [Wikipedia: Universally Unique Identifier](http://en.wikipedia.org/wiki/Universally_unique_identifier)
205//! * [RFC 9562: Universally Unique IDentifiers (UUID)](https://www.ietf.org/rfc/rfc9562.html).
206//!
207//! [`wasm-bindgen`]: https://crates.io/crates/wasm-bindgen
208
209#![no_std]
210#![deny(missing_debug_implementations, missing_docs)]
211#![allow(clippy::mixed_attributes_style)]
212#![doc(
213 html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
214 html_favicon_url = "https://www.rust-lang.org/favicon.ico",
215 html_root_url = "https://docs.rs/uuid/1.16.0"
216)]
217
218#[cfg(any(feature = "std", test))]
219#[macro_use]
220extern crate std;
221
222#[cfg(all(not(feature = "std"), not(test)))]
223#[macro_use]
224extern crate core as std;
225
226mod builder;
227mod error;
228mod non_nil;
229mod parser;
230
231pub mod fmt;
232pub mod timestamp;
233
234pub use timestamp::{context::NoContext, ClockSequence, Timestamp};
235
236#[cfg(any(feature = "v1", feature = "v6"))]
237pub use timestamp::context::Context;
238
239#[cfg(feature = "v7")]
240pub use timestamp::context::ContextV7;
241
242#[cfg(feature = "v1")]
243#[doc(hidden)]
244// Soft-deprecated (Rust doesn't support deprecating re-exports)
245// Use `Context` from the crate root instead
246pub mod v1;
247#[cfg(feature = "v3")]
248mod v3;
249#[cfg(feature = "v4")]
250mod v4;
251#[cfg(feature = "v5")]
252mod v5;
253#[cfg(feature = "v6")]
254mod v6;
255#[cfg(feature = "v7")]
256mod v7;
257#[cfg(feature = "v8")]
258mod v8;
259
260#[cfg(feature = "md5")]
261mod md5;
262#[cfg(feature = "rng")]
263mod rng;
264#[cfg(feature = "sha1")]
265mod sha1;
266
267mod external;
268
269#[macro_use]
270mod macros;
271
272#[doc(hidden)]
273#[cfg(feature = "macro-diagnostics")]
274pub extern crate uuid_macro_internal;
275
276#[doc(hidden)]
277pub mod __macro_support {
278 pub use crate::std::result::Result::{Err, Ok};
279}
280
281use crate::std::convert;
282
283pub use crate::{builder::Builder, error::Error, non_nil::NonNilUuid};
284
285/// A 128-bit (16 byte) buffer containing the UUID.
286///
287/// # ABI
288///
289/// The `Bytes` type is always guaranteed to be have the same ABI as [`Uuid`].
290pub type Bytes = [u8; 16];
291
292/// The version of the UUID, denoting the generating algorithm.
293///
294/// # References
295///
296/// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
297#[derive(Clone, Copy, Debug, PartialEq)]
298#[non_exhaustive]
299#[repr(u8)]
300pub enum Version {
301 /// The "nil" (all zeros) UUID.
302 Nil = 0u8,
303 /// Version 1: Timestamp and node ID.
304 Mac = 1,
305 /// Version 2: DCE Security.
306 Dce = 2,
307 /// Version 3: MD5 hash.
308 Md5 = 3,
309 /// Version 4: Random.
310 Random = 4,
311 /// Version 5: SHA-1 hash.
312 Sha1 = 5,
313 /// Version 6: Sortable Timestamp and node ID.
314 SortMac = 6,
315 /// Version 7: Timestamp and random.
316 SortRand = 7,
317 /// Version 8: Custom.
318 Custom = 8,
319 /// The "max" (all ones) UUID.
320 Max = 0xff,
321}
322
323/// The reserved variants of UUIDs.
324///
325/// # References
326///
327/// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
328#[derive(Clone, Copy, Debug, PartialEq)]
329#[non_exhaustive]
330#[repr(u8)]
331pub enum Variant {
332 /// Reserved by the NCS for backward compatibility.
333 NCS = 0u8,
334 /// As described in the RFC 9562 Specification (default).
335 /// (for backward compatibility it is not yet renamed)
336 RFC4122,
337 /// Reserved by Microsoft for backward compatibility.
338 Microsoft,
339 /// Reserved for future expansion.
340 Future,
341}
342
343/// A Universally Unique Identifier (UUID).
344///
345/// # Examples
346///
347/// Parse a UUID given in the simple format and print it as a urn:
348///
349/// ```
350/// # use uuid::Uuid;
351/// # fn main() -> Result<(), uuid::Error> {
352/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
353///
354/// println!("{}", my_uuid.urn());
355/// # Ok(())
356/// # }
357/// ```
358///
359/// Create a new random (V4) UUID and print it out in hexadecimal form:
360///
361/// ```
362/// // Note that this requires the `v4` feature enabled in the uuid crate.
363/// # use uuid::Uuid;
364/// # fn main() {
365/// # #[cfg(feature = "v4")] {
366/// let my_uuid = Uuid::new_v4();
367///
368/// println!("{}", my_uuid);
369/// # }
370/// # }
371/// ```
372///
373/// # Formatting
374///
375/// A UUID can be formatted in one of a few ways:
376///
377/// * [`simple`](#method.simple): `a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8`.
378/// * [`hyphenated`](#method.hyphenated):
379/// `a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8`.
380/// * [`urn`](#method.urn): `urn:uuid:A1A2A3A4-B1B2-C1C2-D1D2-D3D4D5D6D7D8`.
381/// * [`braced`](#method.braced): `{a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8}`.
382///
383/// The default representation when formatting a UUID with `Display` is
384/// hyphenated:
385///
386/// ```
387/// # use uuid::Uuid;
388/// # fn main() -> Result<(), uuid::Error> {
389/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
390///
391/// assert_eq!(
392/// "a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
393/// my_uuid.to_string(),
394/// );
395/// # Ok(())
396/// # }
397/// ```
398///
399/// Other formats can be specified using adapter methods on the UUID:
400///
401/// ```
402/// # use uuid::Uuid;
403/// # fn main() -> Result<(), uuid::Error> {
404/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
405///
406/// assert_eq!(
407/// "urn:uuid:a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
408/// my_uuid.urn().to_string(),
409/// );
410/// # Ok(())
411/// # }
412/// ```
413///
414/// # Endianness
415///
416/// The specification for UUIDs encodes the integer fields that make up the
417/// value in big-endian order. This crate assumes integer inputs are already in
418/// the correct order by default, regardless of the endianness of the
419/// environment. Most methods that accept integers have a `_le` variant (such as
420/// `from_fields_le`) that assumes any integer values will need to have their
421/// bytes flipped, regardless of the endianness of the environment.
422///
423/// Most users won't need to worry about endianness unless they need to operate
424/// on individual fields (such as when converting between Microsoft GUIDs). The
425/// important things to remember are:
426///
427/// - The endianness is in terms of the fields of the UUID, not the environment.
428/// - The endianness is assumed to be big-endian when there's no `_le` suffix
429/// somewhere.
430/// - Byte-flipping in `_le` methods applies to each integer.
431/// - Endianness roundtrips, so if you create a UUID with `from_fields_le`
432/// you'll get the same values back out with `to_fields_le`.
433///
434/// # ABI
435///
436/// The `Uuid` type is always guaranteed to be have the same ABI as [`Bytes`].
437#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
438#[repr(transparent)]
439// NOTE: Also check `NonNilUuid` when ading new derives here
440#[cfg_attr(
441 all(uuid_unstable, feature = "zerocopy"),
442 derive(
443 zerocopy::IntoBytes,
444 zerocopy::FromBytes,
445 zerocopy::KnownLayout,
446 zerocopy::Immutable,
447 zerocopy::Unaligned
448 )
449)]
450#[cfg_attr(
451 feature = "borsh",
452 derive(borsh_derive::BorshDeserialize, borsh_derive::BorshSerialize)
453)]
454#[cfg_attr(
455 feature = "bytemuck",
456 derive(bytemuck::Zeroable, bytemuck::Pod, bytemuck::TransparentWrapper)
457)]
458pub struct Uuid(Bytes);
459
460impl Uuid {
461 /// UUID namespace for Domain Name System (DNS).
462 pub const NAMESPACE_DNS: Self = Uuid([
463 0x6b, 0xa7, 0xb8, 0x10, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
464 0xc8,
465 ]);
466
467 /// UUID namespace for ISO Object Identifiers (OIDs).
468 pub const NAMESPACE_OID: Self = Uuid([
469 0x6b, 0xa7, 0xb8, 0x12, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
470 0xc8,
471 ]);
472
473 /// UUID namespace for Uniform Resource Locators (URLs).
474 pub const NAMESPACE_URL: Self = Uuid([
475 0x6b, 0xa7, 0xb8, 0x11, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
476 0xc8,
477 ]);
478
479 /// UUID namespace for X.500 Distinguished Names (DNs).
480 pub const NAMESPACE_X500: Self = Uuid([
481 0x6b, 0xa7, 0xb8, 0x14, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
482 0xc8,
483 ]);
484
485 /// Returns the variant of the UUID structure.
486 ///
487 /// This determines the interpretation of the structure of the UUID.
488 /// This method simply reads the value of the variant byte. It doesn't
489 /// validate the rest of the UUID as conforming to that variant.
490 ///
491 /// # Examples
492 ///
493 /// Basic usage:
494 ///
495 /// ```
496 /// # use uuid::{Uuid, Variant};
497 /// # fn main() -> Result<(), uuid::Error> {
498 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
499 ///
500 /// assert_eq!(Variant::RFC4122, my_uuid.get_variant());
501 /// # Ok(())
502 /// # }
503 /// ```
504 ///
505 /// # References
506 ///
507 /// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
508 pub const fn get_variant(&self) -> Variant {
509 match self.as_bytes()[8] {
510 x if x & 0x80 == 0x00 => Variant::NCS,
511 x if x & 0xc0 == 0x80 => Variant::RFC4122,
512 x if x & 0xe0 == 0xc0 => Variant::Microsoft,
513 x if x & 0xe0 == 0xe0 => Variant::Future,
514 // The above match arms are actually exhaustive
515 // We just return `Future` here because we can't
516 // use `unreachable!()` in a `const fn`
517 _ => Variant::Future,
518 }
519 }
520
521 /// Returns the version number of the UUID.
522 ///
523 /// This represents the algorithm used to generate the value.
524 /// This method is the future-proof alternative to [`Uuid::get_version`].
525 ///
526 /// # Examples
527 ///
528 /// Basic usage:
529 ///
530 /// ```
531 /// # use uuid::Uuid;
532 /// # fn main() -> Result<(), uuid::Error> {
533 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
534 ///
535 /// assert_eq!(3, my_uuid.get_version_num());
536 /// # Ok(())
537 /// # }
538 /// ```
539 ///
540 /// # References
541 ///
542 /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
543 pub const fn get_version_num(&self) -> usize {
544 (self.as_bytes()[6] >> 4) as usize
545 }
546
547 /// Returns the version of the UUID.
548 ///
549 /// This represents the algorithm used to generate the value.
550 /// If the version field doesn't contain a recognized version then `None`
551 /// is returned. If you're trying to read the version for a future extension
552 /// you can also use [`Uuid::get_version_num`] to unconditionally return a
553 /// number. Future extensions may start to return `Some` once they're
554 /// standardized and supported.
555 ///
556 /// # Examples
557 ///
558 /// Basic usage:
559 ///
560 /// ```
561 /// # use uuid::{Uuid, Version};
562 /// # fn main() -> Result<(), uuid::Error> {
563 /// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
564 ///
565 /// assert_eq!(Some(Version::Md5), my_uuid.get_version());
566 /// # Ok(())
567 /// # }
568 /// ```
569 ///
570 /// # References
571 ///
572 /// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
573 pub const fn get_version(&self) -> Option<Version> {
574 match self.get_version_num() {
575 0 if self.is_nil() => Some(Version::Nil),
576 1 => Some(Version::Mac),
577 2 => Some(Version::Dce),
578 3 => Some(Version::Md5),
579 4 => Some(Version::Random),
580 5 => Some(Version::Sha1),
581 6 => Some(Version::SortMac),
582 7 => Some(Version::SortRand),
583 8 => Some(Version::Custom),
584 0xf => Some(Version::Max),
585 _ => None,
586 }
587 }
588
589 /// Returns the four field values of the UUID.
590 ///
591 /// These values can be passed to the [`Uuid::from_fields`] method to get
592 /// the original `Uuid` back.
593 ///
594 /// * The first field value represents the first group of (eight) hex
595 /// digits, taken as a big-endian `u32` value. For V1 UUIDs, this field
596 /// represents the low 32 bits of the timestamp.
597 /// * The second field value represents the second group of (four) hex
598 /// digits, taken as a big-endian `u16` value. For V1 UUIDs, this field
599 /// represents the middle 16 bits of the timestamp.
600 /// * The third field value represents the third group of (four) hex digits,
601 /// taken as a big-endian `u16` value. The 4 most significant bits give
602 /// the UUID version, and for V1 UUIDs, the last 12 bits represent the
603 /// high 12 bits of the timestamp.
604 /// * The last field value represents the last two groups of four and twelve
605 /// hex digits, taken in order. The first 1-3 bits of this indicate the
606 /// UUID variant, and for V1 UUIDs, the next 13-15 bits indicate the clock
607 /// sequence and the last 48 bits indicate the node ID.
608 ///
609 /// # Examples
610 ///
611 /// ```
612 /// # use uuid::Uuid;
613 /// # fn main() -> Result<(), uuid::Error> {
614 /// let uuid = Uuid::nil();
615 ///
616 /// assert_eq!(uuid.as_fields(), (0, 0, 0, &[0u8; 8]));
617 ///
618 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
619 ///
620 /// assert_eq!(
621 /// uuid.as_fields(),
622 /// (
623 /// 0xa1a2a3a4,
624 /// 0xb1b2,
625 /// 0xc1c2,
626 /// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
627 /// )
628 /// );
629 /// # Ok(())
630 /// # }
631 /// ```
632 pub fn as_fields(&self) -> (u32, u16, u16, &[u8; 8]) {
633 let bytes = self.as_bytes();
634
635 let d1 = (bytes[0] as u32) << 24
636 | (bytes[1] as u32) << 16
637 | (bytes[2] as u32) << 8
638 | (bytes[3] as u32);
639
640 let d2 = (bytes[4] as u16) << 8 | (bytes[5] as u16);
641
642 let d3 = (bytes[6] as u16) << 8 | (bytes[7] as u16);
643
644 let d4: &[u8; 8] = convert::TryInto::try_into(&bytes[8..16]).unwrap();
645 (d1, d2, d3, d4)
646 }
647
648 /// Returns the four field values of the UUID in little-endian order.
649 ///
650 /// The bytes in the returned integer fields will be converted from
651 /// big-endian order. This is based on the endianness of the UUID,
652 /// rather than the target environment so bytes will be flipped on both
653 /// big and little endian machines.
654 ///
655 /// # Examples
656 ///
657 /// ```
658 /// use uuid::Uuid;
659 ///
660 /// # fn main() -> Result<(), uuid::Error> {
661 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
662 ///
663 /// assert_eq!(
664 /// uuid.to_fields_le(),
665 /// (
666 /// 0xa4a3a2a1,
667 /// 0xb2b1,
668 /// 0xc2c1,
669 /// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
670 /// )
671 /// );
672 /// # Ok(())
673 /// # }
674 /// ```
675 pub fn to_fields_le(&self) -> (u32, u16, u16, &[u8; 8]) {
676 let d1 = (self.as_bytes()[0] as u32)
677 | (self.as_bytes()[1] as u32) << 8
678 | (self.as_bytes()[2] as u32) << 16
679 | (self.as_bytes()[3] as u32) << 24;
680
681 let d2 = (self.as_bytes()[4] as u16) | (self.as_bytes()[5] as u16) << 8;
682
683 let d3 = (self.as_bytes()[6] as u16) | (self.as_bytes()[7] as u16) << 8;
684
685 let d4: &[u8; 8] = convert::TryInto::try_into(&self.as_bytes()[8..16]).unwrap();
686 (d1, d2, d3, d4)
687 }
688
689 /// Returns a 128bit value containing the value.
690 ///
691 /// The bytes in the UUID will be packed directly into a `u128`.
692 ///
693 /// # Examples
694 ///
695 /// ```
696 /// # use uuid::Uuid;
697 /// # fn main() -> Result<(), uuid::Error> {
698 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
699 ///
700 /// assert_eq!(
701 /// uuid.as_u128(),
702 /// 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8,
703 /// );
704 /// # Ok(())
705 /// # }
706 /// ```
707 pub const fn as_u128(&self) -> u128 {
708 u128::from_be_bytes(*self.as_bytes())
709 }
710
711 /// Returns a 128bit little-endian value containing the value.
712 ///
713 /// The bytes in the `u128` will be flipped to convert into big-endian
714 /// order. This is based on the endianness of the UUID, rather than the
715 /// target environment so bytes will be flipped on both big and little
716 /// endian machines.
717 ///
718 /// Note that this will produce a different result than
719 /// [`Uuid::to_fields_le`], because the entire UUID is reversed, rather
720 /// than reversing the individual fields in-place.
721 ///
722 /// # Examples
723 ///
724 /// ```
725 /// # use uuid::Uuid;
726 /// # fn main() -> Result<(), uuid::Error> {
727 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
728 ///
729 /// assert_eq!(
730 /// uuid.to_u128_le(),
731 /// 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1,
732 /// );
733 /// # Ok(())
734 /// # }
735 /// ```
736 pub const fn to_u128_le(&self) -> u128 {
737 u128::from_le_bytes(*self.as_bytes())
738 }
739
740 /// Returns two 64bit values containing the value.
741 ///
742 /// The bytes in the UUID will be split into two `u64`.
743 /// The first u64 represents the 64 most significant bits,
744 /// the second one represents the 64 least significant.
745 ///
746 /// # Examples
747 ///
748 /// ```
749 /// # use uuid::Uuid;
750 /// # fn main() -> Result<(), uuid::Error> {
751 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
752 /// assert_eq!(
753 /// uuid.as_u64_pair(),
754 /// (0xa1a2a3a4b1b2c1c2, 0xd1d2d3d4d5d6d7d8),
755 /// );
756 /// # Ok(())
757 /// # }
758 /// ```
759 pub const fn as_u64_pair(&self) -> (u64, u64) {
760 let value = self.as_u128();
761 ((value >> 64) as u64, value as u64)
762 }
763
764 /// Returns a slice of 16 octets containing the value.
765 ///
766 /// This method borrows the underlying byte value of the UUID.
767 ///
768 /// # Examples
769 ///
770 /// ```
771 /// # use uuid::Uuid;
772 /// let bytes1 = [
773 /// 0xa1, 0xa2, 0xa3, 0xa4,
774 /// 0xb1, 0xb2,
775 /// 0xc1, 0xc2,
776 /// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
777 /// ];
778 /// let uuid1 = Uuid::from_bytes_ref(&bytes1);
779 ///
780 /// let bytes2 = uuid1.as_bytes();
781 /// let uuid2 = Uuid::from_bytes_ref(bytes2);
782 ///
783 /// assert_eq!(uuid1, uuid2);
784 ///
785 /// assert!(std::ptr::eq(
786 /// uuid2 as *const Uuid as *const u8,
787 /// &bytes1 as *const [u8; 16] as *const u8,
788 /// ));
789 /// ```
790 #[inline]
791 pub const fn as_bytes(&self) -> &Bytes {
792 &self.0
793 }
794
795 /// Consumes self and returns the underlying byte value of the UUID.
796 ///
797 /// # Examples
798 ///
799 /// ```
800 /// # use uuid::Uuid;
801 /// let bytes = [
802 /// 0xa1, 0xa2, 0xa3, 0xa4,
803 /// 0xb1, 0xb2,
804 /// 0xc1, 0xc2,
805 /// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
806 /// ];
807 /// let uuid = Uuid::from_bytes(bytes);
808 /// assert_eq!(bytes, uuid.into_bytes());
809 /// ```
810 #[inline]
811 pub const fn into_bytes(self) -> Bytes {
812 self.0
813 }
814
815 /// Returns the bytes of the UUID in little-endian order.
816 ///
817 /// The bytes will be flipped to convert into little-endian order. This is
818 /// based on the endianness of the UUID, rather than the target environment
819 /// so bytes will be flipped on both big and little endian machines.
820 ///
821 /// # Examples
822 ///
823 /// ```
824 /// use uuid::Uuid;
825 ///
826 /// # fn main() -> Result<(), uuid::Error> {
827 /// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
828 ///
829 /// assert_eq!(
830 /// uuid.to_bytes_le(),
831 /// ([
832 /// 0xa4, 0xa3, 0xa2, 0xa1, 0xb2, 0xb1, 0xc2, 0xc1, 0xd1, 0xd2,
833 /// 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8
834 /// ])
835 /// );
836 /// # Ok(())
837 /// # }
838 /// ```
839 pub const fn to_bytes_le(&self) -> Bytes {
840 [
841 self.0[3], self.0[2], self.0[1], self.0[0], self.0[5], self.0[4], self.0[7], self.0[6],
842 self.0[8], self.0[9], self.0[10], self.0[11], self.0[12], self.0[13], self.0[14],
843 self.0[15],
844 ]
845 }
846
847 /// Tests if the UUID is nil (all zeros).
848 pub const fn is_nil(&self) -> bool {
849 self.as_u128() == u128::MIN
850 }
851
852 /// Tests if the UUID is max (all ones).
853 pub const fn is_max(&self) -> bool {
854 self.as_u128() == u128::MAX
855 }
856
857 /// A buffer that can be used for `encode_...` calls, that is
858 /// guaranteed to be long enough for any of the format adapters.
859 ///
860 /// # Examples
861 ///
862 /// ```
863 /// # use uuid::Uuid;
864 /// let uuid = Uuid::nil();
865 ///
866 /// assert_eq!(
867 /// uuid.simple().encode_lower(&mut Uuid::encode_buffer()),
868 /// "00000000000000000000000000000000"
869 /// );
870 ///
871 /// assert_eq!(
872 /// uuid.hyphenated()
873 /// .encode_lower(&mut Uuid::encode_buffer()),
874 /// "00000000-0000-0000-0000-000000000000"
875 /// );
876 ///
877 /// assert_eq!(
878 /// uuid.urn().encode_lower(&mut Uuid::encode_buffer()),
879 /// "urn:uuid:00000000-0000-0000-0000-000000000000"
880 /// );
881 /// ```
882 pub const fn encode_buffer() -> [u8; fmt::Urn::LENGTH] {
883 [0; fmt::Urn::LENGTH]
884 }
885
886 /// If the UUID is the correct version (v1, v6, or v7) this will return
887 /// the timestamp in a version-agnostic [`Timestamp`]. For other versions
888 /// this will return `None`.
889 ///
890 /// # Roundtripping
891 ///
892 /// This method is unlikely to roundtrip a timestamp in a UUID due to the way
893 /// UUIDs encode timestamps. The timestamp returned from this method will be truncated to
894 /// 100ns precision for version 1 and 6 UUIDs, and to millisecond precision for version 7 UUIDs.
895 pub const fn get_timestamp(&self) -> Option<Timestamp> {
896 match self.get_version() {
897 Some(Version::Mac) => {
898 let (ticks, counter) = timestamp::decode_gregorian_timestamp(self);
899
900 Some(Timestamp::from_gregorian(ticks, counter))
901 }
902 Some(Version::SortMac) => {
903 let (ticks, counter) = timestamp::decode_sorted_gregorian_timestamp(self);
904
905 Some(Timestamp::from_gregorian(ticks, counter))
906 }
907 Some(Version::SortRand) => {
908 let millis = timestamp::decode_unix_timestamp_millis(self);
909
910 let seconds = millis / 1000;
911 let nanos = ((millis % 1000) * 1_000_000) as u32;
912
913 Some(Timestamp::from_unix_time(seconds, nanos, 0, 0))
914 }
915 _ => None,
916 }
917 }
918
919 /// If the UUID is the correct version (v1, or v6) this will return the
920 /// node value as a 6-byte array. For other versions this will return `None`.
921 pub const fn get_node_id(&self) -> Option<[u8; 6]> {
922 match self.get_version() {
923 Some(Version::Mac) | Some(Version::SortMac) => {
924 let mut node_id = [0; 6];
925
926 node_id[0] = self.0[10];
927 node_id[1] = self.0[11];
928 node_id[2] = self.0[12];
929 node_id[3] = self.0[13];
930 node_id[4] = self.0[14];
931 node_id[5] = self.0[15];
932
933 Some(node_id)
934 }
935 _ => None,
936 }
937 }
938}
939
940impl Default for Uuid {
941 #[inline]
942 fn default() -> Self {
943 Uuid::nil()
944 }
945}
946
947impl AsRef<Uuid> for Uuid {
948 #[inline]
949 fn as_ref(&self) -> &Uuid {
950 self
951 }
952}
953
954impl AsRef<[u8]> for Uuid {
955 #[inline]
956 fn as_ref(&self) -> &[u8] {
957 &self.0
958 }
959}
960
961#[cfg(feature = "std")]
962impl From<Uuid> for std::vec::Vec<u8> {
963 fn from(value: Uuid) -> Self {
964 value.0.to_vec()
965 }
966}
967
968#[cfg(feature = "std")]
969impl std::convert::TryFrom<std::vec::Vec<u8>> for Uuid {
970 type Error = Error;
971
972 fn try_from(value: std::vec::Vec<u8>) -> Result<Self, Self::Error> {
973 Uuid::from_slice(&value)
974 }
975}
976
977#[cfg(feature = "serde")]
978pub mod serde {
979 //! Adapters for alternative `serde` formats.
980 //!
981 //! This module contains adapters you can use with [`#[serde(with)]`](https://serde.rs/field-attrs.html#with)
982 //! to change the way a [`Uuid`](../struct.Uuid.html) is serialized
983 //! and deserialized.
984
985 pub use crate::external::serde_support::{braced, compact, simple, urn};
986}
987
988#[cfg(test)]
989mod tests {
990 use super::*;
991
992 use crate::std::string::{String, ToString};
993
994 #[cfg(all(
995 target_arch = "wasm32",
996 target_vendor = "unknown",
997 target_os = "unknown"
998 ))]
999 use wasm_bindgen_test::*;
1000
1001 macro_rules! check {
1002 ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1003 $buf.clear();
1004 write!($buf, $format, $target).unwrap();
1005 assert!($buf.len() == $len);
1006 assert!($buf.chars().all($cond), "{}", $buf);
1007 };
1008 }
1009
1010 pub const fn new() -> Uuid {
1011 Uuid::from_bytes([
1012 0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAA, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1013 0xA1, 0xE4,
1014 ])
1015 }
1016
1017 pub const fn new2() -> Uuid {
1018 Uuid::from_bytes([
1019 0xF9, 0x16, 0x8C, 0x5E, 0xCE, 0xB2, 0x4F, 0xAB, 0xB6, 0xBF, 0x32, 0x9B, 0xF3, 0x9F,
1020 0xA1, 0xE4,
1021 ])
1022 }
1023
1024 #[test]
1025 #[cfg_attr(
1026 all(
1027 target_arch = "wasm32",
1028 target_vendor = "unknown",
1029 target_os = "unknown"
1030 ),
1031 wasm_bindgen_test
1032 )]
1033 fn test_uuid_compare() {
1034 let uuid1 = new();
1035 let uuid2 = new2();
1036
1037 assert_eq!(uuid1, uuid1);
1038 assert_eq!(uuid2, uuid2);
1039
1040 assert_ne!(uuid1, uuid2);
1041 assert_ne!(uuid2, uuid1);
1042 }
1043
1044 #[test]
1045 #[cfg_attr(
1046 all(
1047 target_arch = "wasm32",
1048 target_vendor = "unknown",
1049 target_os = "unknown"
1050 ),
1051 wasm_bindgen_test
1052 )]
1053 fn test_uuid_default() {
1054 let default_uuid = Uuid::default();
1055 let nil_uuid = Uuid::nil();
1056
1057 assert_eq!(default_uuid, nil_uuid);
1058 }
1059
1060 #[test]
1061 #[cfg_attr(
1062 all(
1063 target_arch = "wasm32",
1064 target_vendor = "unknown",
1065 target_os = "unknown"
1066 ),
1067 wasm_bindgen_test
1068 )]
1069 fn test_uuid_display() {
1070 use crate::std::fmt::Write;
1071
1072 let uuid = new();
1073 let s = uuid.to_string();
1074 let mut buffer = String::new();
1075
1076 assert_eq!(s, uuid.hyphenated().to_string());
1077
1078 check!(buffer, "{}", uuid, 36, |c| c.is_lowercase()
1079 || c.is_digit(10)
1080 || c == '-');
1081 }
1082
1083 #[test]
1084 #[cfg_attr(
1085 all(
1086 target_arch = "wasm32",
1087 target_vendor = "unknown",
1088 target_os = "unknown"
1089 ),
1090 wasm_bindgen_test
1091 )]
1092 fn test_uuid_lowerhex() {
1093 use crate::std::fmt::Write;
1094
1095 let mut buffer = String::new();
1096 let uuid = new();
1097
1098 check!(buffer, "{:x}", uuid, 36, |c| c.is_lowercase()
1099 || c.is_digit(10)
1100 || c == '-');
1101 }
1102
1103 // noinspection RsAssertEqual
1104 #[test]
1105 #[cfg_attr(
1106 all(
1107 target_arch = "wasm32",
1108 target_vendor = "unknown",
1109 target_os = "unknown"
1110 ),
1111 wasm_bindgen_test
1112 )]
1113 fn test_uuid_operator_eq() {
1114 let uuid1 = new();
1115 let uuid1_dup = uuid1.clone();
1116 let uuid2 = new2();
1117
1118 assert!(uuid1 == uuid1);
1119 assert!(uuid1 == uuid1_dup);
1120 assert!(uuid1_dup == uuid1);
1121
1122 assert!(uuid1 != uuid2);
1123 assert!(uuid2 != uuid1);
1124 assert!(uuid1_dup != uuid2);
1125 assert!(uuid2 != uuid1_dup);
1126 }
1127
1128 #[test]
1129 #[cfg_attr(
1130 all(
1131 target_arch = "wasm32",
1132 target_vendor = "unknown",
1133 target_os = "unknown"
1134 ),
1135 wasm_bindgen_test
1136 )]
1137 fn test_uuid_to_string() {
1138 use crate::std::fmt::Write;
1139
1140 let uuid = new();
1141 let s = uuid.to_string();
1142 let mut buffer = String::new();
1143
1144 assert_eq!(s.len(), 36);
1145
1146 check!(buffer, "{}", s, 36, |c| c.is_lowercase()
1147 || c.is_digit(10)
1148 || c == '-');
1149 }
1150
1151 #[test]
1152 #[cfg_attr(
1153 all(
1154 target_arch = "wasm32",
1155 target_vendor = "unknown",
1156 target_os = "unknown"
1157 ),
1158 wasm_bindgen_test
1159 )]
1160 fn test_non_conforming() {
1161 let from_bytes =
1162 Uuid::from_bytes([4, 54, 67, 12, 43, 2, 2, 76, 32, 50, 87, 5, 1, 33, 43, 87]);
1163
1164 assert_eq!(from_bytes.get_version(), None);
1165 }
1166
1167 #[test]
1168 #[cfg_attr(
1169 all(
1170 target_arch = "wasm32",
1171 target_vendor = "unknown",
1172 target_os = "unknown"
1173 ),
1174 wasm_bindgen_test
1175 )]
1176 fn test_nil() {
1177 let nil = Uuid::nil();
1178 let not_nil = new();
1179
1180 assert!(nil.is_nil());
1181 assert!(!not_nil.is_nil());
1182
1183 assert_eq!(nil.get_version(), Some(Version::Nil));
1184 assert_eq!(not_nil.get_version(), Some(Version::Random));
1185
1186 assert_eq!(
1187 nil,
1188 Builder::from_bytes([0; 16])
1189 .with_version(Version::Nil)
1190 .into_uuid()
1191 );
1192 }
1193
1194 #[test]
1195 #[cfg_attr(
1196 all(
1197 target_arch = "wasm32",
1198 target_vendor = "unknown",
1199 target_os = "unknown"
1200 ),
1201 wasm_bindgen_test
1202 )]
1203 fn test_max() {
1204 let max = Uuid::max();
1205 let not_max = new();
1206
1207 assert!(max.is_max());
1208 assert!(!not_max.is_max());
1209
1210 assert_eq!(max.get_version(), Some(Version::Max));
1211 assert_eq!(not_max.get_version(), Some(Version::Random));
1212
1213 assert_eq!(
1214 max,
1215 Builder::from_bytes([0xff; 16])
1216 .with_version(Version::Max)
1217 .into_uuid()
1218 );
1219 }
1220
1221 #[test]
1222 #[cfg_attr(
1223 all(
1224 target_arch = "wasm32",
1225 target_vendor = "unknown",
1226 target_os = "unknown"
1227 ),
1228 wasm_bindgen_test
1229 )]
1230 fn test_predefined_namespaces() {
1231 assert_eq!(
1232 Uuid::NAMESPACE_DNS.hyphenated().to_string(),
1233 "6ba7b810-9dad-11d1-80b4-00c04fd430c8"
1234 );
1235 assert_eq!(
1236 Uuid::NAMESPACE_URL.hyphenated().to_string(),
1237 "6ba7b811-9dad-11d1-80b4-00c04fd430c8"
1238 );
1239 assert_eq!(
1240 Uuid::NAMESPACE_OID.hyphenated().to_string(),
1241 "6ba7b812-9dad-11d1-80b4-00c04fd430c8"
1242 );
1243 assert_eq!(
1244 Uuid::NAMESPACE_X500.hyphenated().to_string(),
1245 "6ba7b814-9dad-11d1-80b4-00c04fd430c8"
1246 );
1247 }
1248
1249 #[cfg(feature = "v3")]
1250 #[test]
1251 #[cfg_attr(
1252 all(
1253 target_arch = "wasm32",
1254 target_vendor = "unknown",
1255 target_os = "unknown"
1256 ),
1257 wasm_bindgen_test
1258 )]
1259 fn test_get_version_v3() {
1260 let uuid = Uuid::new_v3(&Uuid::NAMESPACE_DNS, "rust-lang.org".as_bytes());
1261
1262 assert_eq!(uuid.get_version().unwrap(), Version::Md5);
1263 assert_eq!(uuid.get_version_num(), 3);
1264 }
1265
1266 #[test]
1267 #[cfg_attr(
1268 all(
1269 target_arch = "wasm32",
1270 target_vendor = "unknown",
1271 target_os = "unknown"
1272 ),
1273 wasm_bindgen_test
1274 )]
1275 fn test_get_timestamp_unsupported_version() {
1276 let uuid = new();
1277
1278 assert_ne!(Version::Mac, uuid.get_version().unwrap());
1279 assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1280 assert_ne!(Version::SortRand, uuid.get_version().unwrap());
1281
1282 assert!(uuid.get_timestamp().is_none());
1283 }
1284
1285 #[test]
1286 #[cfg_attr(
1287 all(
1288 target_arch = "wasm32",
1289 target_vendor = "unknown",
1290 target_os = "unknown"
1291 ),
1292 wasm_bindgen_test
1293 )]
1294 fn test_get_node_id_unsupported_version() {
1295 let uuid = new();
1296
1297 assert_ne!(Version::Mac, uuid.get_version().unwrap());
1298 assert_ne!(Version::SortMac, uuid.get_version().unwrap());
1299
1300 assert!(uuid.get_node_id().is_none());
1301 }
1302
1303 #[test]
1304 #[cfg_attr(
1305 all(
1306 target_arch = "wasm32",
1307 target_vendor = "unknown",
1308 target_os = "unknown"
1309 ),
1310 wasm_bindgen_test
1311 )]
1312 fn test_get_variant() {
1313 let uuid1 = new();
1314 let uuid2 = Uuid::parse_str("550e8400-e29b-41d4-a716-446655440000").unwrap();
1315 let uuid3 = Uuid::parse_str("67e55044-10b1-426f-9247-bb680e5fe0c8").unwrap();
1316 let uuid4 = Uuid::parse_str("936DA01F9ABD4d9dC0C702AF85C822A8").unwrap();
1317 let uuid5 = Uuid::parse_str("F9168C5E-CEB2-4faa-D6BF-329BF39FA1E4").unwrap();
1318 let uuid6 = Uuid::parse_str("f81d4fae-7dec-11d0-7765-00a0c91e6bf6").unwrap();
1319
1320 assert_eq!(uuid1.get_variant(), Variant::RFC4122);
1321 assert_eq!(uuid2.get_variant(), Variant::RFC4122);
1322 assert_eq!(uuid3.get_variant(), Variant::RFC4122);
1323 assert_eq!(uuid4.get_variant(), Variant::Microsoft);
1324 assert_eq!(uuid5.get_variant(), Variant::Microsoft);
1325 assert_eq!(uuid6.get_variant(), Variant::NCS);
1326 }
1327
1328 #[test]
1329 #[cfg_attr(
1330 all(
1331 target_arch = "wasm32",
1332 target_vendor = "unknown",
1333 target_os = "unknown"
1334 ),
1335 wasm_bindgen_test
1336 )]
1337 fn test_to_simple_string() {
1338 let uuid1 = new();
1339 let s = uuid1.simple().to_string();
1340
1341 assert_eq!(s.len(), 32);
1342 assert!(s.chars().all(|c| c.is_digit(16)));
1343 }
1344
1345 #[test]
1346 #[cfg_attr(
1347 all(
1348 target_arch = "wasm32",
1349 target_vendor = "unknown",
1350 target_os = "unknown"
1351 ),
1352 wasm_bindgen_test
1353 )]
1354 fn test_hyphenated_string() {
1355 let uuid1 = new();
1356 let s = uuid1.hyphenated().to_string();
1357
1358 assert_eq!(36, s.len());
1359 assert!(s.chars().all(|c| c.is_digit(16) || c == '-'));
1360 }
1361
1362 #[test]
1363 #[cfg_attr(
1364 all(
1365 target_arch = "wasm32",
1366 target_vendor = "unknown",
1367 target_os = "unknown"
1368 ),
1369 wasm_bindgen_test
1370 )]
1371 fn test_upper_lower_hex() {
1372 use std::fmt::Write;
1373
1374 let mut buf = String::new();
1375 let u = new();
1376
1377 macro_rules! check {
1378 ($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
1379 $buf.clear();
1380 write!($buf, $format, $target).unwrap();
1381 assert_eq!($len, buf.len());
1382 assert!($buf.chars().all($cond), "{}", $buf);
1383 };
1384 }
1385
1386 check!(buf, "{:x}", u, 36, |c| c.is_lowercase()
1387 || c.is_digit(10)
1388 || c == '-');
1389 check!(buf, "{:X}", u, 36, |c| c.is_uppercase()
1390 || c.is_digit(10)
1391 || c == '-');
1392 check!(buf, "{:#x}", u, 36, |c| c.is_lowercase()
1393 || c.is_digit(10)
1394 || c == '-');
1395 check!(buf, "{:#X}", u, 36, |c| c.is_uppercase()
1396 || c.is_digit(10)
1397 || c == '-');
1398
1399 check!(buf, "{:X}", u.hyphenated(), 36, |c| c.is_uppercase()
1400 || c.is_digit(10)
1401 || c == '-');
1402 check!(buf, "{:X}", u.simple(), 32, |c| c.is_uppercase()
1403 || c.is_digit(10));
1404 check!(buf, "{:#X}", u.hyphenated(), 36, |c| c.is_uppercase()
1405 || c.is_digit(10)
1406 || c == '-');
1407 check!(buf, "{:#X}", u.simple(), 32, |c| c.is_uppercase()
1408 || c.is_digit(10));
1409
1410 check!(buf, "{:x}", u.hyphenated(), 36, |c| c.is_lowercase()
1411 || c.is_digit(10)
1412 || c == '-');
1413 check!(buf, "{:x}", u.simple(), 32, |c| c.is_lowercase()
1414 || c.is_digit(10));
1415 check!(buf, "{:#x}", u.hyphenated(), 36, |c| c.is_lowercase()
1416 || c.is_digit(10)
1417 || c == '-');
1418 check!(buf, "{:#x}", u.simple(), 32, |c| c.is_lowercase()
1419 || c.is_digit(10));
1420 }
1421
1422 #[test]
1423 #[cfg_attr(
1424 all(
1425 target_arch = "wasm32",
1426 target_vendor = "unknown",
1427 target_os = "unknown"
1428 ),
1429 wasm_bindgen_test
1430 )]
1431 fn test_to_urn_string() {
1432 let uuid1 = new();
1433 let ss = uuid1.urn().to_string();
1434 let s = &ss[9..];
1435
1436 assert!(ss.starts_with("urn:uuid:"));
1437 assert_eq!(s.len(), 36);
1438 assert!(s.chars().all(|c| c.is_digit(16) || c == '-'));
1439 }
1440
1441 #[test]
1442 #[cfg_attr(
1443 all(
1444 target_arch = "wasm32",
1445 target_vendor = "unknown",
1446 target_os = "unknown"
1447 ),
1448 wasm_bindgen_test
1449 )]
1450 fn test_to_simple_string_matching() {
1451 let uuid1 = new();
1452
1453 let hs = uuid1.hyphenated().to_string();
1454 let ss = uuid1.simple().to_string();
1455
1456 let hsn = hs.chars().filter(|&c| c != '-').collect::<String>();
1457
1458 assert_eq!(hsn, ss);
1459 }
1460
1461 #[test]
1462 #[cfg_attr(
1463 all(
1464 target_arch = "wasm32",
1465 target_vendor = "unknown",
1466 target_os = "unknown"
1467 ),
1468 wasm_bindgen_test
1469 )]
1470 fn test_string_roundtrip() {
1471 let uuid = new();
1472
1473 let hs = uuid.hyphenated().to_string();
1474 let uuid_hs = Uuid::parse_str(&hs).unwrap();
1475 assert_eq!(uuid_hs, uuid);
1476
1477 let ss = uuid.to_string();
1478 let uuid_ss = Uuid::parse_str(&ss).unwrap();
1479 assert_eq!(uuid_ss, uuid);
1480 }
1481
1482 #[test]
1483 #[cfg_attr(
1484 all(
1485 target_arch = "wasm32",
1486 target_vendor = "unknown",
1487 target_os = "unknown"
1488 ),
1489 wasm_bindgen_test
1490 )]
1491 fn test_from_fields() {
1492 let d1: u32 = 0xa1a2a3a4;
1493 let d2: u16 = 0xb1b2;
1494 let d3: u16 = 0xc1c2;
1495 let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1496
1497 let u = Uuid::from_fields(d1, d2, d3, &d4);
1498
1499 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1500 let result = u.simple().to_string();
1501 assert_eq!(result, expected);
1502 }
1503
1504 #[test]
1505 #[cfg_attr(
1506 all(
1507 target_arch = "wasm32",
1508 target_vendor = "unknown",
1509 target_os = "unknown"
1510 ),
1511 wasm_bindgen_test
1512 )]
1513 fn test_from_fields_le() {
1514 let d1: u32 = 0xa4a3a2a1;
1515 let d2: u16 = 0xb2b1;
1516 let d3: u16 = 0xc2c1;
1517 let d4 = [0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1518
1519 let u = Uuid::from_fields_le(d1, d2, d3, &d4);
1520
1521 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1522 let result = u.simple().to_string();
1523 assert_eq!(result, expected);
1524 }
1525
1526 #[test]
1527 #[cfg_attr(
1528 all(
1529 target_arch = "wasm32",
1530 target_vendor = "unknown",
1531 target_os = "unknown"
1532 ),
1533 wasm_bindgen_test
1534 )]
1535 fn test_as_fields() {
1536 let u = new();
1537 let (d1, d2, d3, d4) = u.as_fields();
1538
1539 assert_ne!(d1, 0);
1540 assert_ne!(d2, 0);
1541 assert_ne!(d3, 0);
1542 assert_eq!(d4.len(), 8);
1543 assert!(!d4.iter().all(|&b| b == 0));
1544 }
1545
1546 #[test]
1547 #[cfg_attr(
1548 all(
1549 target_arch = "wasm32",
1550 target_vendor = "unknown",
1551 target_os = "unknown"
1552 ),
1553 wasm_bindgen_test
1554 )]
1555 fn test_fields_roundtrip() {
1556 let d1_in: u32 = 0xa1a2a3a4;
1557 let d2_in: u16 = 0xb1b2;
1558 let d3_in: u16 = 0xc1c2;
1559 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1560
1561 let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1562 let (d1_out, d2_out, d3_out, d4_out) = u.as_fields();
1563
1564 assert_eq!(d1_in, d1_out);
1565 assert_eq!(d2_in, d2_out);
1566 assert_eq!(d3_in, d3_out);
1567 assert_eq!(d4_in, d4_out);
1568 }
1569
1570 #[test]
1571 #[cfg_attr(
1572 all(
1573 target_arch = "wasm32",
1574 target_vendor = "unknown",
1575 target_os = "unknown"
1576 ),
1577 wasm_bindgen_test
1578 )]
1579 fn test_fields_le_roundtrip() {
1580 let d1_in: u32 = 0xa4a3a2a1;
1581 let d2_in: u16 = 0xb2b1;
1582 let d3_in: u16 = 0xc2c1;
1583 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1584
1585 let u = Uuid::from_fields_le(d1_in, d2_in, d3_in, d4_in);
1586 let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1587
1588 assert_eq!(d1_in, d1_out);
1589 assert_eq!(d2_in, d2_out);
1590 assert_eq!(d3_in, d3_out);
1591 assert_eq!(d4_in, d4_out);
1592 }
1593
1594 #[test]
1595 #[cfg_attr(
1596 all(
1597 target_arch = "wasm32",
1598 target_vendor = "unknown",
1599 target_os = "unknown"
1600 ),
1601 wasm_bindgen_test
1602 )]
1603 fn test_fields_le_are_actually_le() {
1604 let d1_in: u32 = 0xa1a2a3a4;
1605 let d2_in: u16 = 0xb1b2;
1606 let d3_in: u16 = 0xc1c2;
1607 let d4_in = &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8];
1608
1609 let u = Uuid::from_fields(d1_in, d2_in, d3_in, d4_in);
1610 let (d1_out, d2_out, d3_out, d4_out) = u.to_fields_le();
1611
1612 assert_eq!(d1_in, d1_out.swap_bytes());
1613 assert_eq!(d2_in, d2_out.swap_bytes());
1614 assert_eq!(d3_in, d3_out.swap_bytes());
1615 assert_eq!(d4_in, d4_out);
1616 }
1617
1618 #[test]
1619 #[cfg_attr(
1620 all(
1621 target_arch = "wasm32",
1622 target_vendor = "unknown",
1623 target_os = "unknown"
1624 ),
1625 wasm_bindgen_test
1626 )]
1627 fn test_from_u128() {
1628 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1629
1630 let u = Uuid::from_u128(v_in);
1631
1632 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1633 let result = u.simple().to_string();
1634 assert_eq!(result, expected);
1635 }
1636
1637 #[test]
1638 #[cfg_attr(
1639 all(
1640 target_arch = "wasm32",
1641 target_vendor = "unknown",
1642 target_os = "unknown"
1643 ),
1644 wasm_bindgen_test
1645 )]
1646 fn test_from_u128_le() {
1647 let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1648
1649 let u = Uuid::from_u128_le(v_in);
1650
1651 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1652 let result = u.simple().to_string();
1653 assert_eq!(result, expected);
1654 }
1655
1656 #[test]
1657 #[cfg_attr(
1658 all(
1659 target_arch = "wasm32",
1660 target_vendor = "unknown",
1661 target_os = "unknown"
1662 ),
1663 wasm_bindgen_test
1664 )]
1665 fn test_from_u64_pair() {
1666 let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1667 let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1668
1669 let u = Uuid::from_u64_pair(high_in, low_in);
1670
1671 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1672 let result = u.simple().to_string();
1673 assert_eq!(result, expected);
1674 }
1675
1676 #[test]
1677 #[cfg_attr(
1678 all(
1679 target_arch = "wasm32",
1680 target_vendor = "unknown",
1681 target_os = "unknown"
1682 ),
1683 wasm_bindgen_test
1684 )]
1685 fn test_u128_roundtrip() {
1686 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1687
1688 let u = Uuid::from_u128(v_in);
1689 let v_out = u.as_u128();
1690
1691 assert_eq!(v_in, v_out);
1692 }
1693
1694 #[test]
1695 #[cfg_attr(
1696 all(
1697 target_arch = "wasm32",
1698 target_vendor = "unknown",
1699 target_os = "unknown"
1700 ),
1701 wasm_bindgen_test
1702 )]
1703 fn test_u128_le_roundtrip() {
1704 let v_in: u128 = 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1;
1705
1706 let u = Uuid::from_u128_le(v_in);
1707 let v_out = u.to_u128_le();
1708
1709 assert_eq!(v_in, v_out);
1710 }
1711
1712 #[test]
1713 #[cfg_attr(
1714 all(
1715 target_arch = "wasm32",
1716 target_vendor = "unknown",
1717 target_os = "unknown"
1718 ),
1719 wasm_bindgen_test
1720 )]
1721 fn test_u64_pair_roundtrip() {
1722 let high_in: u64 = 0xa1a2a3a4b1b2c1c2;
1723 let low_in: u64 = 0xd1d2d3d4d5d6d7d8;
1724
1725 let u = Uuid::from_u64_pair(high_in, low_in);
1726 let (high_out, low_out) = u.as_u64_pair();
1727
1728 assert_eq!(high_in, high_out);
1729 assert_eq!(low_in, low_out);
1730 }
1731
1732 #[test]
1733 #[cfg_attr(
1734 all(
1735 target_arch = "wasm32",
1736 target_vendor = "unknown",
1737 target_os = "unknown"
1738 ),
1739 wasm_bindgen_test
1740 )]
1741 fn test_u128_le_is_actually_le() {
1742 let v_in: u128 = 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8;
1743
1744 let u = Uuid::from_u128(v_in);
1745 let v_out = u.to_u128_le();
1746
1747 assert_eq!(v_in, v_out.swap_bytes());
1748 }
1749
1750 #[test]
1751 #[cfg_attr(
1752 all(
1753 target_arch = "wasm32",
1754 target_vendor = "unknown",
1755 target_os = "unknown"
1756 ),
1757 wasm_bindgen_test
1758 )]
1759 fn test_from_slice() {
1760 let b = [
1761 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1762 0xd7, 0xd8,
1763 ];
1764
1765 let u = Uuid::from_slice(&b).unwrap();
1766 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1767
1768 assert_eq!(u.simple().to_string(), expected);
1769 }
1770
1771 #[test]
1772 #[cfg_attr(
1773 all(
1774 target_arch = "wasm32",
1775 target_vendor = "unknown",
1776 target_os = "unknown"
1777 ),
1778 wasm_bindgen_test
1779 )]
1780 fn test_from_bytes() {
1781 let b = [
1782 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1783 0xd7, 0xd8,
1784 ];
1785
1786 let u = Uuid::from_bytes(b);
1787 let expected = "a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8";
1788
1789 assert_eq!(u.simple().to_string(), expected);
1790 }
1791
1792 #[test]
1793 #[cfg_attr(
1794 all(
1795 target_arch = "wasm32",
1796 target_vendor = "unknown",
1797 target_os = "unknown"
1798 ),
1799 wasm_bindgen_test
1800 )]
1801 fn test_as_bytes() {
1802 let u = new();
1803 let ub = u.as_bytes();
1804 let ur: &[u8] = u.as_ref();
1805
1806 assert_eq!(ub.len(), 16);
1807 assert_eq!(ur.len(), 16);
1808 assert!(!ub.iter().all(|&b| b == 0));
1809 assert!(!ur.iter().all(|&b| b == 0));
1810 }
1811
1812 #[test]
1813 #[cfg(feature = "std")]
1814 #[cfg_attr(
1815 all(
1816 target_arch = "wasm32",
1817 target_vendor = "unknown",
1818 target_os = "unknown"
1819 ),
1820 wasm_bindgen_test
1821 )]
1822 fn test_convert_vec() {
1823 use crate::std::{convert::TryInto, vec::Vec};
1824
1825 let u = new();
1826 let ub: &[u8] = u.as_ref();
1827
1828 let v: Vec<u8> = u.into();
1829
1830 assert_eq!(&v, ub);
1831
1832 let uv: Uuid = v.try_into().unwrap();
1833
1834 assert_eq!(uv, u);
1835 }
1836
1837 #[test]
1838 #[cfg_attr(
1839 all(
1840 target_arch = "wasm32",
1841 target_vendor = "unknown",
1842 target_os = "unknown"
1843 ),
1844 wasm_bindgen_test
1845 )]
1846 fn test_bytes_roundtrip() {
1847 let b_in: crate::Bytes = [
1848 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1849 0xd7, 0xd8,
1850 ];
1851
1852 let u = Uuid::from_slice(&b_in).unwrap();
1853
1854 let b_out = u.as_bytes();
1855
1856 assert_eq!(&b_in, b_out);
1857 }
1858
1859 #[test]
1860 #[cfg_attr(
1861 all(
1862 target_arch = "wasm32",
1863 target_vendor = "unknown",
1864 target_os = "unknown"
1865 ),
1866 wasm_bindgen_test
1867 )]
1868 fn test_bytes_le_roundtrip() {
1869 let b = [
1870 0xa1, 0xa2, 0xa3, 0xa4, 0xb1, 0xb2, 0xc1, 0xc2, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6,
1871 0xd7, 0xd8,
1872 ];
1873
1874 let u1 = Uuid::from_bytes(b);
1875
1876 let b_le = u1.to_bytes_le();
1877
1878 let u2 = Uuid::from_bytes_le(b_le);
1879
1880 assert_eq!(u1, u2);
1881 }
1882
1883 #[test]
1884 #[cfg_attr(
1885 all(
1886 target_arch = "wasm32",
1887 target_vendor = "unknown",
1888 target_os = "unknown"
1889 ),
1890 wasm_bindgen_test
1891 )]
1892 fn test_iterbytes_impl_for_uuid() {
1893 let mut set = std::collections::HashSet::new();
1894 let id1 = new();
1895 let id2 = new2();
1896 set.insert(id1.clone());
1897
1898 assert!(set.contains(&id1));
1899 assert!(!set.contains(&id2));
1900 }
1901}