aho_corasick/nfa/
noncontiguous.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
/*!
Provides a noncontiguous NFA implementation of Aho-Corasick.

This is a low-level API that generally only needs to be used in niche
circumstances. When possible, prefer using [`AhoCorasick`](crate::AhoCorasick)
instead of a noncontiguous NFA directly. Using an `NFA` directly is typically
only necessary when one needs access to the [`Automaton`] trait implementation.
*/

use alloc::{
    collections::{BTreeSet, VecDeque},
    vec,
    vec::Vec,
};

use crate::{
    automaton::Automaton,
    util::{
        alphabet::{ByteClassSet, ByteClasses},
        error::{BuildError, MatchError},
        prefilter::{self, opposite_ascii_case, Prefilter},
        primitives::{IteratorIndexExt, PatternID, SmallIndex, StateID},
        remapper::Remapper,
        search::{Anchored, MatchKind},
        special::Special,
    },
};

/// A noncontiguous NFA implementation of Aho-Corasick.
///
/// When possible, prefer using [`AhoCorasick`](crate::AhoCorasick) instead of
/// this type directly. Using an `NFA` directly is typically only necessary
/// when one needs access to the [`Automaton`] trait implementation.
///
/// This NFA represents the "core" implementation of Aho-Corasick in this
/// crate. Namely, constructing this NFA involving building a trie and then
/// filling in the failure transitions between states, similar to what is
/// described in any standard textbook description of Aho-Corasick.
///
/// In order to minimize heap usage and to avoid additional construction costs,
/// this implementation represents the transitions of all states as distinct
/// sparse memory allocations. This is where it gets its name from. That is,
/// this NFA has no contiguous memory allocation for its transition table. Each
/// state gets its own allocation.
///
/// While the sparse representation keeps memory usage to somewhat reasonable
/// levels, it is still quite large and also results in somewhat mediocre
/// search performance. For this reason, it is almost always a good idea to
/// use a [`contiguous::NFA`](crate::nfa::contiguous::NFA) instead. It is
/// marginally slower to build, but has higher throughput and can sometimes use
/// an order of magnitude less memory. The main reason to use a noncontiguous
/// NFA is when you need the fastest possible construction time, or when a
/// contiguous NFA does not have the desired capacity. (The total number of NFA
/// states it can have is fewer than a noncontiguous NFA.)
///
/// # Example
///
/// This example shows how to build an `NFA` directly and use it to execute
/// [`Automaton::try_find`]:
///
/// ```
/// use aho_corasick::{
///     automaton::Automaton,
///     nfa::noncontiguous::NFA,
///     Input, Match,
/// };
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let nfa = NFA::new(patterns).unwrap();
/// assert_eq!(
///     Some(Match::must(0, 1..2)),
///     nfa.try_find(&Input::new(haystack))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// It is also possible to implement your own version of `try_find`. See the
/// [`Automaton`] documentation for an example.
#[derive(Clone)]
pub struct NFA {
    /// The match semantics built into this NFA.
    match_kind: MatchKind,
    /// A set of states. Each state defines its own transitions, a fail
    /// transition and a set of indices corresponding to matches.
    ///
    /// The first state is always the fail state, which is used only as a
    /// sentinel. Namely, in the final NFA, no transition into the fail state
    /// exists. (Well, they do, but they aren't followed. Instead, the state's
    /// failure transition is followed.)
    ///
    /// The second state (index 1) is always the dead state. Dead states are
    /// in every automaton, but only used when leftmost-{first,longest} match
    /// semantics are enabled. Specifically, they instruct search to stop
    /// at specific points in order to report the correct match location. In
    /// the standard Aho-Corasick construction, there are no transitions to
    /// the dead state.
    ///
    /// The third state (index 2) is generally intended to be the starting or
    /// "root" state.
    states: Vec<State>,
    /// Transitions stored in a sparse representation via a linked list.
    ///
    /// Each transition contains three pieces of information: the byte it
    /// is defined for, the state it transitions to and a link to the next
    /// transition in the same state (or `StateID::ZERO` if it is the last
    /// transition).
    ///
    /// The first transition for each state is determined by `State::sparse`.
    ///
    /// Note that this contains a complete set of all transitions in this NFA,
    /// including states that have a dense representation for transitions.
    /// (Adding dense transitions for a state doesn't remove its sparse
    /// transitions, since deleting transitions from this particular sparse
    /// representation would be fairly expensive.)
    sparse: Vec<Transition>,
    /// Transitions stored in a dense representation.
    ///
    /// A state has a row in this table if and only if `State::dense` is
    /// not equal to `StateID::ZERO`. When not zero, there are precisely
    /// `NFA::byte_classes::alphabet_len()` entries beginning at `State::dense`
    /// in this table.
    ///
    /// Generally a very small minority of states have a dense representation
    /// since it uses so much memory.
    dense: Vec<StateID>,
    /// Matches stored in linked list for each state.
    ///
    /// Like sparse transitions, each match has a link to the next match in the
    /// state.
    ///
    /// The first match for each state is determined by `State::matches`.
    matches: Vec<Match>,
    /// The length, in bytes, of each pattern in this NFA. This slice is
    /// indexed by `PatternID`.
    ///
    /// The number of entries in this vector corresponds to the total number of
    /// patterns in this automaton.
    pattern_lens: Vec<SmallIndex>,
    /// A prefilter for quickly skipping to candidate matches, if pertinent.
    prefilter: Option<Prefilter>,
    /// A set of equivalence classes in terms of bytes. We compute this while
    /// building the NFA, but don't use it in the NFA's states. Instead, we
    /// use this for building the DFA. We store it on the NFA since it's easy
    /// to compute while visiting the patterns.
    byte_classes: ByteClasses,
    /// The length, in bytes, of the shortest pattern in this automaton. This
    /// information is useful for detecting whether an automaton matches the
    /// empty string or not.
    min_pattern_len: usize,
    /// The length, in bytes, of the longest pattern in this automaton. This
    /// information is useful for keeping correct buffer sizes when searching
    /// on streams.
    max_pattern_len: usize,
    /// The information required to deduce which states are "special" in this
    /// NFA.
    ///
    /// Since the DEAD and FAIL states are always the first two states and
    /// there are only ever two start states (which follow all of the match
    /// states), it follows that we can determine whether a state is a fail,
    /// dead, match or start with just a few comparisons on the ID itself:
    ///
    ///    is_dead(sid): sid == NFA::DEAD
    ///    is_fail(sid): sid == NFA::FAIL
    ///   is_match(sid): NFA::FAIL < sid && sid <= max_match_id
    ///   is_start(sid): sid == start_unanchored_id || sid == start_anchored_id
    ///
    /// Note that this only applies to the NFA after it has been constructed.
    /// During construction, the start states are the first ones added and the
    /// match states are inter-leaved with non-match states. Once all of the
    /// states have been added, the states are shuffled such that the above
    /// predicates hold.
    special: Special,
}

impl NFA {
    /// Create a new Aho-Corasick noncontiguous NFA using the default
    /// configuration.
    ///
    /// Use a [`Builder`] if you want to change the configuration.
    pub fn new<I, P>(patterns: I) -> Result<NFA, BuildError>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        NFA::builder().build(patterns)
    }

    /// A convenience method for returning a new Aho-Corasick noncontiguous NFA
    /// builder.
    ///
    /// This usually permits one to just import the `NFA` type.
    pub fn builder() -> Builder {
        Builder::new()
    }
}

impl NFA {
    /// The DEAD state is a sentinel state like the FAIL state. The DEAD state
    /// instructs any search to stop and return any currently recorded match,
    /// or no match otherwise. Generally speaking, it is impossible for an
    /// unanchored standard search to enter a DEAD state. But an anchored
    /// search can, and so to can a leftmost search.
    ///
    /// We put DEAD before FAIL so that DEAD is always 0. We repeat this
    /// decision across the other Aho-Corasicm automata, so that DEAD
    /// states there are always 0 too. It's not that we need all of the
    /// implementations to agree, but rather, the contiguous NFA and the DFA
    /// use a sort of "premultiplied" state identifier where the only state
    /// whose ID is always known and constant is the first state. Subsequent
    /// state IDs depend on how much space has already been used in the
    /// transition table.
    pub(crate) const DEAD: StateID = StateID::new_unchecked(0);
    /// The FAIL state mostly just corresponds to the ID of any transition on a
    /// state that isn't explicitly defined. When one transitions into the FAIL
    /// state, one must follow the previous state's failure transition before
    /// doing the next state lookup. In this way, FAIL is more of a sentinel
    /// than a state that one actually transitions into. In particular, it is
    /// never exposed in the `Automaton` interface.
    pub(crate) const FAIL: StateID = StateID::new_unchecked(1);

    /// Returns the equivalence classes of bytes found while constructing
    /// this NFA.
    ///
    /// Note that the NFA doesn't actually make use of these equivalence
    /// classes. Instead, these are useful for building the DFA when desired.
    pub(crate) fn byte_classes(&self) -> &ByteClasses {
        &self.byte_classes
    }

    /// Returns a slice containing the length of each pattern in this searcher.
    /// It is indexed by `PatternID` and has length `NFA::patterns_len`.
    ///
    /// This is exposed for convenience when building a contiguous NFA. But it
    /// can be reconstructed from the `Automaton` API if necessary.
    pub(crate) fn pattern_lens_raw(&self) -> &[SmallIndex] {
        &self.pattern_lens
    }

    /// Returns a slice of all states in this non-contiguous NFA.
    pub(crate) fn states(&self) -> &[State] {
        &self.states
    }

    /// Returns the underlying "special" state information for this NFA.
    pub(crate) fn special(&self) -> &Special {
        &self.special
    }

    /// Swaps the states at `id1` and `id2`.
    ///
    /// This does not update the transitions of any state to account for the
    /// state swap.
    pub(crate) fn swap_states(&mut self, id1: StateID, id2: StateID) {
        self.states.swap(id1.as_usize(), id2.as_usize());
    }

    /// Re-maps all state IDs in this NFA according to the `map` function
    /// given.
    pub(crate) fn remap(&mut self, map: impl Fn(StateID) -> StateID) {
        let alphabet_len = self.byte_classes.alphabet_len();
        for state in self.states.iter_mut() {
            state.fail = map(state.fail);
            let mut link = state.sparse;
            while link != StateID::ZERO {
                let t = &mut self.sparse[link];
                t.next = map(t.next);
                link = t.link;
            }
            if state.dense != StateID::ZERO {
                let start = state.dense.as_usize();
                for next in self.dense[start..][..alphabet_len].iter_mut() {
                    *next = map(*next);
                }
            }
        }
    }

    /// Iterate over all of the transitions for the given state ID.
    pub(crate) fn iter_trans(
        &self,
        sid: StateID,
    ) -> impl Iterator<Item = Transition> + '_ {
        let mut link = self.states[sid].sparse;
        core::iter::from_fn(move || {
            if link == StateID::ZERO {
                return None;
            }
            let t = self.sparse[link];
            link = t.link;
            Some(t)
        })
    }

    /// Iterate over all of the matches for the given state ID.
    pub(crate) fn iter_matches(
        &self,
        sid: StateID,
    ) -> impl Iterator<Item = PatternID> + '_ {
        let mut link = self.states[sid].matches;
        core::iter::from_fn(move || {
            if link == StateID::ZERO {
                return None;
            }
            let m = self.matches[link];
            link = m.link;
            Some(m.pid)
        })
    }

    /// Return the link following the one given. If the one given is the last
    /// link for the given state, then return `None`.
    ///
    /// If no previous link is given, then this returns the first link in the
    /// state, if one exists.
    ///
    /// This is useful for manually iterating over the transitions in a single
    /// state without borrowing the NFA. This permits mutating other parts of
    /// the NFA during iteration. Namely, one can access the transition pointed
    /// to by the link via `self.sparse[link]`.
    fn next_link(
        &self,
        sid: StateID,
        prev: Option<StateID>,
    ) -> Option<StateID> {
        let link =
            prev.map_or(self.states[sid].sparse, |p| self.sparse[p].link);
        if link == StateID::ZERO {
            None
        } else {
            Some(link)
        }
    }

    /// Follow the transition for the given byte in the given state. If no such
    /// transition exists, then the FAIL state ID is returned.
    #[inline(always)]
    fn follow_transition(&self, sid: StateID, byte: u8) -> StateID {
        let s = &self.states[sid];
        // This is a special case that targets starting states and states
        // near a start state. Namely, after the initial trie is constructed,
        // we look for states close to the start state to convert to a dense
        // representation for their transitions. This winds up using a lot more
        // memory per state in exchange for faster transition lookups. But
        // since we only do this for a small number of states (by default), the
        // memory usage is usually minimal.
        //
        // This has *massive* benefit when executing searches because the
        // unanchored starting state is by far the hottest state and is
        // frequently visited. Moreover, the 'for' loop below that works
        // decently on an actually sparse state is disastrous on a state that
        // is nearly or completely dense.
        if s.dense == StateID::ZERO {
            self.follow_transition_sparse(sid, byte)
        } else {
            let class = usize::from(self.byte_classes.get(byte));
            self.dense[s.dense.as_usize() + class]
        }
    }

    /// Like `follow_transition`, but always uses the sparse representation.
    #[inline(always)]
    fn follow_transition_sparse(&self, sid: StateID, byte: u8) -> StateID {
        for t in self.iter_trans(sid) {
            if byte <= t.byte {
                if byte == t.byte {
                    return t.next;
                }
                break;
            }
        }
        NFA::FAIL
    }

    /// Set the transition for the given byte to the state ID given.
    ///
    /// Note that one should not set transitions to the FAIL state. It is not
    /// technically incorrect, but it wastes space. If a transition is not
    /// defined, then it is automatically assumed to lead to the FAIL state.
    fn add_transition(
        &mut self,
        prev: StateID,
        byte: u8,
        next: StateID,
    ) -> Result<(), BuildError> {
        if self.states[prev].dense != StateID::ZERO {
            let dense = self.states[prev].dense;
            let class = usize::from(self.byte_classes.get(byte));
            self.dense[dense.as_usize() + class] = next;
        }

        let head = self.states[prev].sparse;
        if head == StateID::ZERO || byte < self.sparse[head].byte {
            let new_link = self.alloc_transition()?;
            self.sparse[new_link] = Transition { byte, next, link: head };
            self.states[prev].sparse = new_link;
            return Ok(());
        } else if byte == self.sparse[head].byte {
            self.sparse[head].next = next;
            return Ok(());
        }

        // We handled the only cases where the beginning of the transition
        // chain needs to change. At this point, we now know that there is
        // at least one entry in the transition chain and the byte for that
        // transition is less than the byte for the transition we're adding.
        let (mut link_prev, mut link_next) = (head, self.sparse[head].link);
        while link_next != StateID::ZERO && byte > self.sparse[link_next].byte
        {
            link_prev = link_next;
            link_next = self.sparse[link_next].link;
        }
        if link_next == StateID::ZERO || byte < self.sparse[link_next].byte {
            let link = self.alloc_transition()?;
            self.sparse[link] = Transition { byte, next, link: link_next };
            self.sparse[link_prev].link = link;
        } else {
            assert_eq!(byte, self.sparse[link_next].byte);
            self.sparse[link_next].next = next;
        }
        Ok(())
    }

    /// This sets every possible transition (all 255 of them) for the given
    /// state to the name `next` value.
    ///
    /// This is useful for efficiently initializing start/dead states.
    ///
    /// # Panics
    ///
    /// This requires that the state has no transitions added to it already.
    /// If it has any transitions, then this panics. It will also panic if
    /// the state has been densified prior to calling this.
    fn init_full_state(
        &mut self,
        prev: StateID,
        next: StateID,
    ) -> Result<(), BuildError> {
        assert_eq!(
            StateID::ZERO,
            self.states[prev].dense,
            "state must not be dense yet"
        );
        assert_eq!(
            StateID::ZERO,
            self.states[prev].sparse,
            "state must have zero transitions"
        );
        let mut prev_link = StateID::ZERO;
        for byte in 0..=255 {
            let new_link = self.alloc_transition()?;
            self.sparse[new_link] =
                Transition { byte, next, link: StateID::ZERO };
            if prev_link == StateID::ZERO {
                self.states[prev].sparse = new_link;
            } else {
                self.sparse[prev_link].link = new_link;
            }
            prev_link = new_link;
        }
        Ok(())
    }

    /// Add a match for the given pattern ID to the state for the given ID.
    fn add_match(
        &mut self,
        sid: StateID,
        pid: PatternID,
    ) -> Result<(), BuildError> {
        let head = self.states[sid].matches;
        let mut link = head;
        while self.matches[link].link != StateID::ZERO {
            link = self.matches[link].link;
        }
        let new_match_link = self.alloc_match()?;
        self.matches[new_match_link].pid = pid;
        if link == StateID::ZERO {
            self.states[sid].matches = new_match_link;
        } else {
            self.matches[link].link = new_match_link;
        }
        Ok(())
    }

    /// Copy matches from the `src` state to the `dst` state. This is useful
    /// when a match state can be reached via a failure transition. In which
    /// case, you'll want to copy the matches (if any) from the state reached
    /// by the failure transition to the original state you were at.
    fn copy_matches(
        &mut self,
        src: StateID,
        dst: StateID,
    ) -> Result<(), BuildError> {
        let head_dst = self.states[dst].matches;
        let mut link_dst = head_dst;
        while self.matches[link_dst].link != StateID::ZERO {
            link_dst = self.matches[link_dst].link;
        }
        let mut link_src = self.states[src].matches;
        while link_src != StateID::ZERO {
            let new_match_link =
                StateID::new(self.matches.len()).map_err(|e| {
                    BuildError::state_id_overflow(
                        StateID::MAX.as_u64(),
                        e.attempted(),
                    )
                })?;
            self.matches.push(Match {
                pid: self.matches[link_src].pid,
                link: StateID::ZERO,
            });
            if link_dst == StateID::ZERO {
                self.states[dst].matches = new_match_link;
            } else {
                self.matches[link_dst].link = new_match_link;
            }

            link_dst = new_match_link;
            link_src = self.matches[link_src].link;
        }
        Ok(())
    }

    /// Create a new entry in `NFA::trans`, if there's room, and return that
    /// entry's ID. If there's no room, then an error is returned.
    fn alloc_transition(&mut self) -> Result<StateID, BuildError> {
        let id = StateID::new(self.sparse.len()).map_err(|e| {
            BuildError::state_id_overflow(StateID::MAX.as_u64(), e.attempted())
        })?;
        self.sparse.push(Transition::default());
        Ok(id)
    }

    /// Create a new entry in `NFA::matches`, if there's room, and return that
    /// entry's ID. If there's no room, then an error is returned.
    fn alloc_match(&mut self) -> Result<StateID, BuildError> {
        let id = StateID::new(self.matches.len()).map_err(|e| {
            BuildError::state_id_overflow(StateID::MAX.as_u64(), e.attempted())
        })?;
        self.matches.push(Match::default());
        Ok(id)
    }

    /// Create a new set of `N` transitions in this NFA's dense transition
    /// table. The ID return corresponds to the index at which the `N`
    /// transitions begin. So `id+0` is the first transition and `id+(N-1)` is
    /// the last.
    ///
    /// `N` is determined via `NFA::byte_classes::alphabet_len`.
    fn alloc_dense_state(&mut self) -> Result<StateID, BuildError> {
        let id = StateID::new(self.dense.len()).map_err(|e| {
            BuildError::state_id_overflow(StateID::MAX.as_u64(), e.attempted())
        })?;
        // We use FAIL because it's the correct default. If a state doesn't
        // have a transition defined for every possible byte value, then the
        // transition function should return NFA::FAIL.
        self.dense.extend(
            core::iter::repeat(NFA::FAIL)
                .take(self.byte_classes.alphabet_len()),
        );
        Ok(id)
    }

    /// Allocate and add a fresh state to the underlying NFA and return its
    /// ID (guaranteed to be one more than the ID of the previously allocated
    /// state). If the ID would overflow `StateID`, then this returns an error.
    fn alloc_state(&mut self, depth: usize) -> Result<StateID, BuildError> {
        // This is OK because we error when building the trie if we see a
        // pattern whose length cannot fit into a 'SmallIndex', and the longest
        // possible depth corresponds to the length of the longest pattern.
        let depth = SmallIndex::new(depth)
            .expect("patterns longer than SmallIndex::MAX are not allowed");
        let id = StateID::new(self.states.len()).map_err(|e| {
            BuildError::state_id_overflow(StateID::MAX.as_u64(), e.attempted())
        })?;
        self.states.push(State {
            sparse: StateID::ZERO,
            dense: StateID::ZERO,
            matches: StateID::ZERO,
            fail: self.special.start_unanchored_id,
            depth,
        });
        Ok(id)
    }
}

// SAFETY: 'start_state' always returns a valid state ID, 'next_state' always
// returns a valid state ID given a valid state ID. We otherwise claim that
// all other methods are correct as well.
unsafe impl Automaton for NFA {
    #[inline(always)]
    fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> {
        match anchored {
            Anchored::No => Ok(self.special.start_unanchored_id),
            Anchored::Yes => Ok(self.special.start_anchored_id),
        }
    }

    #[inline(always)]
    fn next_state(
        &self,
        anchored: Anchored,
        mut sid: StateID,
        byte: u8,
    ) -> StateID {
        // This terminates since:
        //
        // 1. state.fail never points to the FAIL state.
        // 2. All state.fail values point to a state closer to the start state.
        // 3. The start state has no transitions to the FAIL state.
        loop {
            let next = self.follow_transition(sid, byte);
            if next != NFA::FAIL {
                return next;
            }
            // For an anchored search, we never follow failure transitions
            // because failure transitions lead us down a path to matching
            // a *proper* suffix of the path we were on. Thus, it can only
            // produce matches that appear after the beginning of the search.
            if anchored.is_anchored() {
                return NFA::DEAD;
            }
            sid = self.states[sid].fail();
        }
    }

    #[inline(always)]
    fn is_special(&self, sid: StateID) -> bool {
        sid <= self.special.max_special_id
    }

    #[inline(always)]
    fn is_dead(&self, sid: StateID) -> bool {
        sid == NFA::DEAD
    }

    #[inline(always)]
    fn is_match(&self, sid: StateID) -> bool {
        // N.B. This returns true when sid==NFA::FAIL but that's okay because
        // NFA::FAIL is not actually a valid state ID from the perspective of
        // the Automaton trait. Namely, it is never returned by 'start_state'
        // or by 'next_state'. So we don't need to care about it here.
        !self.is_dead(sid) && sid <= self.special.max_match_id
    }

    #[inline(always)]
    fn is_start(&self, sid: StateID) -> bool {
        sid == self.special.start_unanchored_id
            || sid == self.special.start_anchored_id
    }

    #[inline(always)]
    fn match_kind(&self) -> MatchKind {
        self.match_kind
    }

    #[inline(always)]
    fn patterns_len(&self) -> usize {
        self.pattern_lens.len()
    }

    #[inline(always)]
    fn pattern_len(&self, pid: PatternID) -> usize {
        self.pattern_lens[pid].as_usize()
    }

    #[inline(always)]
    fn min_pattern_len(&self) -> usize {
        self.min_pattern_len
    }

    #[inline(always)]
    fn max_pattern_len(&self) -> usize {
        self.max_pattern_len
    }

    #[inline(always)]
    fn match_len(&self, sid: StateID) -> usize {
        self.iter_matches(sid).count()
    }

    #[inline(always)]
    fn match_pattern(&self, sid: StateID, index: usize) -> PatternID {
        self.iter_matches(sid).nth(index).unwrap()
    }

    #[inline(always)]
    fn memory_usage(&self) -> usize {
        self.states.len() * core::mem::size_of::<State>()
            + self.sparse.len() * core::mem::size_of::<Transition>()
            + self.matches.len() * core::mem::size_of::<Match>()
            + self.dense.len() * StateID::SIZE
            + self.pattern_lens.len() * SmallIndex::SIZE
            + self.prefilter.as_ref().map_or(0, |p| p.memory_usage())
    }

    #[inline(always)]
    fn prefilter(&self) -> Option<&Prefilter> {
        self.prefilter.as_ref()
    }
}

/// A representation of a sparse NFA state for an Aho-Corasick automaton.
///
/// It contains the transitions to the next state, a failure transition for
/// cases where there exists no other transition for the current input byte
/// and the matches implied by visiting this state (if any).
#[derive(Clone, Debug)]
pub(crate) struct State {
    /// A pointer to `NFA::trans` corresponding to the head of a linked list
    /// containing all of the transitions for this state.
    ///
    /// This is `StateID::ZERO` if and only if this state has zero transitions.
    sparse: StateID,
    /// A pointer to a row of `N` transitions in `NFA::dense`. These
    /// transitions correspond precisely to what is obtained by traversing
    /// `sparse`, but permits constant time lookup.
    ///
    /// When this is zero (which is true for most states in the default
    /// configuration), then this state has no dense representation.
    ///
    /// Note that `N` is equal to `NFA::byte_classes::alphabet_len()`. This is
    /// typically much less than 256 (the maximum value).
    dense: StateID,
    /// A pointer to `NFA::matches` corresponding to the head of a linked list
    /// containing all of the matches for this state.
    ///
    /// This is `StateID::ZERO` if and only if this state is not a match state.
    matches: StateID,
    /// The state that should be transitioned to if the current byte in the
    /// haystack does not have a corresponding transition defined in this
    /// state.
    fail: StateID,
    /// The depth of this state. Specifically, this is the distance from this
    /// state to the starting state. (For the special sentinel states DEAD and
    /// FAIL, their depth is always 0.) The depth of a starting state is 0.
    ///
    /// Note that depth is currently not used in this non-contiguous NFA. It
    /// may in the future, but it is used in the contiguous NFA. Namely, it
    /// permits an optimization where states near the starting state have their
    /// transitions stored in a dense fashion, but all other states have their
    /// transitions stored in a sparse fashion. (This non-contiguous NFA uses
    /// a sparse representation for all states unconditionally.) In any case,
    /// this is really the only convenient place to compute and store this
    /// information, which we need when building the contiguous NFA.
    depth: SmallIndex,
}

impl State {
    /// Return true if and only if this state is a match state.
    pub(crate) fn is_match(&self) -> bool {
        self.matches != StateID::ZERO
    }

    /// Returns the failure transition for this state.
    pub(crate) fn fail(&self) -> StateID {
        self.fail
    }

    /// Returns the depth of this state. That is, the number of transitions
    /// this state is from the start state of the NFA.
    pub(crate) fn depth(&self) -> SmallIndex {
        self.depth
    }
}

/// A single transition in a non-contiguous NFA.
#[derive(Clone, Copy, Default)]
#[repr(packed)]
pub(crate) struct Transition {
    byte: u8,
    next: StateID,
    link: StateID,
}

impl Transition {
    /// Return the byte for which this transition is defined.
    pub(crate) fn byte(&self) -> u8 {
        self.byte
    }

    /// Return the ID of the state that this transition points to.
    pub(crate) fn next(&self) -> StateID {
        self.next
    }

    /// Return the ID of the next transition.
    fn link(&self) -> StateID {
        self.link
    }
}

impl core::fmt::Debug for Transition {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(
            f,
            "Transition(byte: {:X?}, next: {:?}, link: {:?})",
            self.byte,
            self.next().as_usize(),
            self.link().as_usize()
        )
    }
}

/// A single match in a non-contiguous NFA.
#[derive(Clone, Copy, Default)]
struct Match {
    pid: PatternID,
    link: StateID,
}

impl Match {
    /// Return the pattern ID for this match.
    pub(crate) fn pattern(&self) -> PatternID {
        self.pid
    }

    /// Return the ID of the next match.
    fn link(&self) -> StateID {
        self.link
    }
}

impl core::fmt::Debug for Match {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(
            f,
            "Match(pid: {:?}, link: {:?})",
            self.pattern().as_usize(),
            self.link().as_usize()
        )
    }
}

/// A builder for configuring an Aho-Corasick noncontiguous NFA.
///
/// This builder has a subset of the options available to a
/// [`AhoCorasickBuilder`](crate::AhoCorasickBuilder). Of the shared options,
/// their behavior is identical.
#[derive(Clone, Debug)]
pub struct Builder {
    match_kind: MatchKind,
    prefilter: bool,
    ascii_case_insensitive: bool,
    dense_depth: usize,
}

impl Default for Builder {
    fn default() -> Builder {
        Builder {
            match_kind: MatchKind::default(),
            prefilter: true,
            ascii_case_insensitive: false,
            dense_depth: 3,
        }
    }
}

impl Builder {
    /// Create a new builder for configuring an Aho-Corasick noncontiguous NFA.
    pub fn new() -> Builder {
        Builder::default()
    }

    /// Build an Aho-Corasick noncontiguous NFA from the given iterator of
    /// patterns.
    ///
    /// A builder may be reused to create more NFAs.
    pub fn build<I, P>(&self, patterns: I) -> Result<NFA, BuildError>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        debug!("building non-contiguous NFA");
        let nfa = Compiler::new(self)?.compile(patterns)?;
        debug!(
            "non-contiguous NFA built, <states: {:?}, size: {:?}>",
            nfa.states.len(),
            nfa.memory_usage()
        );
        Ok(nfa)
    }

    /// Set the desired match semantics.
    ///
    /// See
    /// [`AhoCorasickBuilder::match_kind`](crate::AhoCorasickBuilder::match_kind)
    /// for more documentation and examples.
    pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder {
        self.match_kind = kind;
        self
    }

    /// Enable ASCII-aware case insensitive matching.
    ///
    /// See
    /// [`AhoCorasickBuilder::ascii_case_insensitive`](crate::AhoCorasickBuilder::ascii_case_insensitive)
    /// for more documentation and examples.
    pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder {
        self.ascii_case_insensitive = yes;
        self
    }

    /// Set the limit on how many states use a dense representation for their
    /// transitions. Other states will generally use a sparse representation.
    ///
    /// See
    /// [`AhoCorasickBuilder::dense_depth`](crate::AhoCorasickBuilder::dense_depth)
    /// for more documentation and examples.
    pub fn dense_depth(&mut self, depth: usize) -> &mut Builder {
        self.dense_depth = depth;
        self
    }

    /// Enable heuristic prefilter optimizations.
    ///
    /// See
    /// [`AhoCorasickBuilder::prefilter`](crate::AhoCorasickBuilder::prefilter)
    /// for more documentation and examples.
    pub fn prefilter(&mut self, yes: bool) -> &mut Builder {
        self.prefilter = yes;
        self
    }
}

/// A compiler uses a builder configuration and builds up the NFA formulation
/// of an Aho-Corasick automaton. This roughly corresponds to the standard
/// formulation described in textbooks, with some tweaks to support leftmost
/// searching.
#[derive(Debug)]
struct Compiler<'a> {
    builder: &'a Builder,
    prefilter: prefilter::Builder,
    nfa: NFA,
    byteset: ByteClassSet,
}

impl<'a> Compiler<'a> {
    fn new(builder: &'a Builder) -> Result<Compiler<'a>, BuildError> {
        let prefilter = prefilter::Builder::new(builder.match_kind)
            .ascii_case_insensitive(builder.ascii_case_insensitive);
        Ok(Compiler {
            builder,
            prefilter,
            nfa: NFA {
                match_kind: builder.match_kind,
                states: vec![],
                sparse: vec![],
                dense: vec![],
                matches: vec![],
                pattern_lens: vec![],
                prefilter: None,
                byte_classes: ByteClasses::singletons(),
                min_pattern_len: usize::MAX,
                max_pattern_len: 0,
                special: Special::zero(),
            },
            byteset: ByteClassSet::empty(),
        })
    }

    fn compile<I, P>(mut self, patterns: I) -> Result<NFA, BuildError>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        // Add dummy transition/match links, so that no valid link will point
        // to another link at index 0.
        self.nfa.sparse.push(Transition::default());
        self.nfa.matches.push(Match::default());
        // Add a dummy dense transition so that no states can have dense==0
        // represent a valid pointer to dense transitions. This permits
        // dense==0 to be a sentinel indicating "no dense transitions."
        self.nfa.dense.push(NFA::DEAD);
        // the dead state, only used for leftmost and fixed to id==0
        self.nfa.alloc_state(0)?;
        // the fail state, which is never entered and fixed to id==1
        self.nfa.alloc_state(0)?;
        // unanchored start state, initially fixed to id==2 but later shuffled
        // to appear after all non-start match states.
        self.nfa.special.start_unanchored_id = self.nfa.alloc_state(0)?;
        // anchored start state, initially fixed to id==3 but later shuffled
        // to appear after unanchored start state.
        self.nfa.special.start_anchored_id = self.nfa.alloc_state(0)?;
        // Initialize the unanchored starting state in order to make it dense,
        // and thus make transition lookups on this state faster.
        self.init_unanchored_start_state()?;
        // Set all transitions on the DEAD state to point to itself. This way,
        // the DEAD state can never be escaped. It MUST be used as a sentinel
        // in any correct search.
        self.add_dead_state_loop()?;
        // Build the base trie from the given patterns.
        self.build_trie(patterns)?;
        self.nfa.states.shrink_to_fit();
        // Turn our set of bytes into equivalent classes. This NFA
        // implementation uses byte classes only for states that use a dense
        // representation of transitions. (And that's why this comes before
        // `self.densify()`, as the byte classes need to be set first.)
        self.nfa.byte_classes = self.byteset.byte_classes();
        // Add transitions (and maybe matches) to the anchored starting state.
        // The anchored starting state is used for anchored searches. The only
        // mechanical difference between it and the unanchored start state is
        // that missing transitions map to the DEAD state instead of the FAIL
        // state.
        self.set_anchored_start_state()?;
        // Rewrite transitions to the FAIL state on the unanchored start state
        // as self-transitions. This keeps the start state active at all times.
        self.add_unanchored_start_state_loop();
        // Make some (possibly zero) states use a dense representation for
        // transitions. It's important to do this right after the states
        // and non-failure transitions are solidified. That way, subsequent
        // accesses (particularly `fill_failure_transitions`) will benefit from
        // the faster transition lookup in densified states.
        self.densify()?;
        // The meat of the Aho-Corasick algorithm: compute and write failure
        // transitions. i.e., the state to move to when a transition isn't
        // defined in the current state. These are epsilon transitions and thus
        // make this formulation an NFA.
        self.fill_failure_transitions()?;
        // Handle a special case under leftmost semantics when at least one
        // of the patterns is the empty string.
        self.close_start_state_loop_for_leftmost();
        // Shuffle states so that we have DEAD, FAIL, MATCH, ..., START, START,
        // NON-MATCH, ... This permits us to very quickly query the type of
        // the state we're currently in during a search.
        self.shuffle();
        self.nfa.prefilter = self.prefilter.build();
        // Store the maximum ID of all *relevant* special states. Start states
        // are only relevant when we have a prefilter, otherwise, there is zero
        // reason to care about whether a state is a start state or not during
        // a search. Indeed, without a prefilter, we are careful to explicitly
        // NOT care about start states, otherwise the search can ping pong
        // between the unrolled loop and the handling of special-status states
        // and destroy perf.
        self.nfa.special.max_special_id = if self.nfa.prefilter.is_some() {
            // Why the anchored starting state? Because we always put it
            // after the unanchored starting state and it is therefore the
            // maximum. Why put unanchored followed by anchored? No particular
            // reason, but that's how the states are logically organized in the
            // Thompson NFA implementation found in regex-automata. ¯\_(ツ)_/¯
            self.nfa.special.start_anchored_id
        } else {
            self.nfa.special.max_match_id
        };
        self.nfa.sparse.shrink_to_fit();
        self.nfa.dense.shrink_to_fit();
        self.nfa.matches.shrink_to_fit();
        self.nfa.pattern_lens.shrink_to_fit();
        Ok(self.nfa)
    }

    /// This sets up the initial prefix trie that makes up the Aho-Corasick
    /// automaton. Effectively, it creates the basic structure of the
    /// automaton, where every pattern given has a path from the start state to
    /// the end of the pattern.
    fn build_trie<I, P>(&mut self, patterns: I) -> Result<(), BuildError>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        'PATTERNS: for (i, pat) in patterns.into_iter().enumerate() {
            let pid = PatternID::new(i).map_err(|e| {
                BuildError::pattern_id_overflow(
                    PatternID::MAX.as_u64(),
                    e.attempted(),
                )
            })?;
            let pat = pat.as_ref();
            let patlen = SmallIndex::new(pat.len())
                .map_err(|_| BuildError::pattern_too_long(pid, pat.len()))?;
            self.nfa.min_pattern_len =
                core::cmp::min(self.nfa.min_pattern_len, pat.len());
            self.nfa.max_pattern_len =
                core::cmp::max(self.nfa.max_pattern_len, pat.len());
            assert_eq!(
                i,
                self.nfa.pattern_lens.len(),
                "expected number of patterns to match pattern ID"
            );
            self.nfa.pattern_lens.push(patlen);
            // We add the pattern to the prefilter here because the pattern
            // ID in the prefilter is determined with respect to the patterns
            // added to the prefilter. That is, it isn't the ID we have here,
            // but the one determined by its own accounting of patterns.
            // To ensure they line up, we add every pattern we see to the
            // prefilter, even if some patterns ultimately are impossible to
            // match (in leftmost-first semantics specifically).
            //
            // Another way of doing this would be to expose an API in the
            // prefilter to permit setting your own pattern IDs. Or to just use
            // our own map and go between them. But this case is sufficiently
            // rare that we don't bother and just make sure they're in sync.
            if self.builder.prefilter {
                self.prefilter.add(pat);
            }

            let mut prev = self.nfa.special.start_unanchored_id;
            let mut saw_match = false;
            for (depth, &b) in pat.iter().enumerate() {
                // When leftmost-first match semantics are requested, we
                // specifically stop adding patterns when a previously added
                // pattern is a prefix of it. We avoid adding it because
                // leftmost-first semantics imply that the pattern can never
                // match. This is not just an optimization to save space! It
                // is necessary for correctness. In fact, this is the only
                // difference in the automaton between the implementations for
                // leftmost-first and leftmost-longest.
                saw_match = saw_match || self.nfa.states[prev].is_match();
                if self.builder.match_kind.is_leftmost_first() && saw_match {
                    // Skip to the next pattern immediately. This avoids
                    // incorrectly adding a match after this loop terminates.
                    continue 'PATTERNS;
                }

                // Add this byte to our equivalence classes. These don't
                // get used while building the trie, but other Aho-Corasick
                // implementations may use them.
                self.byteset.set_range(b, b);
                if self.builder.ascii_case_insensitive {
                    let b = opposite_ascii_case(b);
                    self.byteset.set_range(b, b);
                }

                // If the transition from prev using the current byte already
                // exists, then just move through it. Otherwise, add a new
                // state. We track the depth here so that we can determine
                // how to represent transitions. States near the start state
                // use a dense representation that uses more memory but is
                // faster. Other states use a sparse representation that uses
                // less memory but is slower.
                let next = self.nfa.follow_transition(prev, b);
                if next != NFA::FAIL {
                    prev = next;
                } else {
                    let next = self.nfa.alloc_state(depth)?;
                    self.nfa.add_transition(prev, b, next)?;
                    if self.builder.ascii_case_insensitive {
                        let b = opposite_ascii_case(b);
                        self.nfa.add_transition(prev, b, next)?;
                    }
                    prev = next;
                }
            }
            // Once the pattern has been added, log the match in the final
            // state that it reached.
            self.nfa.add_match(prev, pid)?;
        }
        Ok(())
    }

    /// This routine creates failure transitions according to the standard
    /// textbook formulation of the Aho-Corasick algorithm, with a couple small
    /// tweaks to support "leftmost" semantics.
    ///
    /// Building failure transitions is the most interesting part of building
    /// the Aho-Corasick automaton, because they are what allow searches to
    /// be performed in linear time. Specifically, a failure transition is
    /// a single transition associated with each state that points back to
    /// the longest proper suffix of the pattern being searched. The failure
    /// transition is followed whenever there exists no transition on the
    /// current state for the current input byte. If there is no other proper
    /// suffix, then the failure transition points back to the starting state.
    ///
    /// For example, let's say we built an Aho-Corasick automaton with the
    /// following patterns: 'abcd' and 'cef'. The trie looks like this:
    ///
    /// ```ignore
    ///          a - S1 - b - S2 - c - S3 - d - S4*
    ///         /
    ///     S0 - c - S5 - e - S6 - f - S7*
    /// ```
    ///
    /// At this point, it should be fairly straight-forward to see how this
    /// trie can be used in a simplistic way. At any given position in the
    /// text we're searching (called the "subject" string), all we need to do
    /// is follow the transitions in the trie by consuming one transition for
    /// each byte in the subject string. If we reach a match state, then we can
    /// report that location as a match.
    ///
    /// The trick comes when searching a subject string like 'abcef'. We'll
    /// initially follow the transition from S0 to S1 and wind up in S3 after
    /// observng the 'c' byte. At this point, the next byte is 'e' but state
    /// S3 has no transition for 'e', so the search fails. We then would need
    /// to restart the search at the next position in 'abcef', which
    /// corresponds to 'b'. The match would fail, but the next search starting
    /// at 'c' would finally succeed. The problem with this approach is that
    /// we wind up searching the subject string potentially many times. In
    /// effect, this makes the algorithm have worst case `O(n * m)` complexity,
    /// where `n ~ len(subject)` and `m ~ len(all patterns)`. We would instead
    /// like to achieve a `O(n + m)` worst case complexity.
    ///
    /// This is where failure transitions come in. Instead of dying at S3 in
    /// the first search, the automaton can instruct the search to move to
    /// another part of the automaton that corresponds to a suffix of what
    /// we've seen so far. Recall that we've seen 'abc' in the subject string,
    /// and the automaton does indeed have a non-empty suffix, 'c', that could
    /// potentially lead to another match. Thus, the actual Aho-Corasick
    /// automaton for our patterns in this case looks like this:
    ///
    /// ```ignore
    ///          a - S1 - b - S2 - c - S3 - d - S4*
    ///         /                      /
    ///        /       ----------------
    ///       /       /
    ///     S0 - c - S5 - e - S6 - f - S7*
    /// ```
    ///
    /// That is, we have a failure transition from S3 to S5, which is followed
    /// exactly in cases when we are in state S3 but see any byte other than
    /// 'd' (that is, we've "failed" to find a match in this portion of our
    /// trie). We know we can transition back to S5 because we've already seen
    /// a 'c' byte, so we don't need to re-scan it. We can then pick back up
    /// with the search starting at S5 and complete our match.
    ///
    /// Adding failure transitions to a trie is fairly simple, but subtle. The
    /// key issue is that you might have multiple failure transition that you
    /// need to follow. For example, look at the trie for the patterns
    /// 'abcd', 'b', 'bcd' and 'cd':
    ///
    /// ```ignore
    ///          - a - S1 - b - S2* - c - S3 - d - S4*
    ///         /               /         /
    ///        /         -------   -------
    ///       /         /         /
    ///     S0 --- b - S5* - c - S6 - d - S7*
    ///       \                  /
    ///        \         --------
    ///         \       /
    ///          - c - S8 - d - S9*
    /// ```
    ///
    /// The failure transitions for this trie are defined from S2 to S5,
    /// S3 to S6 and S6 to S8. Moreover, state S2 needs to track that it
    /// corresponds to a match, since its failure transition to S5 is itself
    /// a match state.
    ///
    /// Perhaps simplest way to think about adding these failure transitions
    /// is recursively. That is, if you know the failure transitions for every
    /// possible previous state that could be visited (e.g., when computing the
    /// failure transition for S3, you already know the failure transitions
    /// for S0, S1 and S2), then you can simply follow the failure transition
    /// of the previous state and check whether the incoming transition is
    /// defined after following the failure transition.
    ///
    /// For example, when determining the failure state for S3, by our
    /// assumptions, we already know that there is a failure transition from
    /// S2 (the previous state) to S5. So we follow that transition and check
    /// whether the transition connecting S2 to S3 is defined. Indeed, it is,
    /// as there is a transition from S5 to S6 for the byte 'c'. If no such
    /// transition existed, we could keep following the failure transitions
    /// until we reach the start state, which is the failure transition for
    /// every state that has no corresponding proper suffix.
    ///
    /// We don't actually use recursion to implement this, but instead, use a
    /// breadth first search of the automaton. Our base case is the start
    /// state, whose failure transition is just a transition to itself.
    ///
    /// When building a leftmost automaton, we proceed as above, but only
    /// include a subset of failure transitions. Namely, we omit any failure
    /// transitions that appear after a match state in the trie. This is
    /// because failure transitions always point back to a proper suffix of
    /// what has been seen so far. Thus, following a failure transition after
    /// a match implies looking for a match that starts after the one that has
    /// already been seen, which is of course therefore not the leftmost match.
    ///
    /// N.B. I came up with this algorithm on my own, and after scouring all of
    /// the other AC implementations I know of (Perl, Snort, many on GitHub).
    /// I couldn't find any that implement leftmost semantics like this.
    /// Perl of course needs leftmost-first semantics, but they implement it
    /// with a seeming hack at *search* time instead of encoding it into the
    /// automaton. There are also a couple Java libraries that support leftmost
    /// longest semantics, but they do it by building a queue of matches at
    /// search time, which is even worse than what Perl is doing. ---AG
    fn fill_failure_transitions(&mut self) -> Result<(), BuildError> {
        let is_leftmost = self.builder.match_kind.is_leftmost();
        let start_uid = self.nfa.special.start_unanchored_id;
        // Initialize the queue for breadth first search with all transitions
        // out of the start state. We handle the start state specially because
        // we only want to follow non-self transitions. If we followed self
        // transitions, then this would never terminate.
        let mut queue = VecDeque::new();
        let mut seen = self.queued_set();
        let mut prev_link = None;
        while let Some(link) = self.nfa.next_link(start_uid, prev_link) {
            prev_link = Some(link);
            let t = self.nfa.sparse[link];

            // Skip anything we've seen before and any self-transitions on the
            // start state.
            if start_uid == t.next() || seen.contains(t.next) {
                continue;
            }
            queue.push_back(t.next);
            seen.insert(t.next);
            // Under leftmost semantics, if a state immediately following
            // the start state is a match state, then we never want to
            // follow its failure transition since the failure transition
            // necessarily leads back to the start state, which we never
            // want to do for leftmost matching after a match has been
            // found.
            //
            // We apply the same logic to non-start states below as well.
            if is_leftmost && self.nfa.states[t.next].is_match() {
                self.nfa.states[t.next].fail = NFA::DEAD;
            }
        }
        while let Some(id) = queue.pop_front() {
            let mut prev_link = None;
            while let Some(link) = self.nfa.next_link(id, prev_link) {
                prev_link = Some(link);
                let t = self.nfa.sparse[link];

                if seen.contains(t.next) {
                    // The only way to visit a duplicate state in a transition
                    // list is when ASCII case insensitivity is enabled. In
                    // this case, we want to skip it since it's redundant work.
                    // But it would also end up duplicating matches, which
                    // results in reporting duplicate matches in some cases.
                    // See the 'acasei010' regression test.
                    continue;
                }
                queue.push_back(t.next);
                seen.insert(t.next);

                // As above for start states, under leftmost semantics, once
                // we see a match all subsequent states should have no failure
                // transitions because failure transitions always imply looking
                // for a match that is a suffix of what has been seen so far
                // (where "seen so far" corresponds to the string formed by
                // following the transitions from the start state to the
                // current state). Under leftmost semantics, we specifically do
                // not want to allow this to happen because we always want to
                // report the match found at the leftmost position.
                //
                // The difference between leftmost-first and leftmost-longest
                // occurs previously while we build the trie. For
                // leftmost-first, we simply omit any entries that would
                // otherwise require passing through a match state.
                //
                // Note that for correctness, the failure transition has to be
                // set to the dead state for ALL states following a match, not
                // just the match state itself. However, by setting the failure
                // transition to the dead state on all match states, the dead
                // state will automatically propagate to all subsequent states
                // via the failure state computation below.
                if is_leftmost && self.nfa.states[t.next].is_match() {
                    self.nfa.states[t.next].fail = NFA::DEAD;
                    continue;
                }
                let mut fail = self.nfa.states[id].fail;
                while self.nfa.follow_transition(fail, t.byte) == NFA::FAIL {
                    fail = self.nfa.states[fail].fail;
                }
                fail = self.nfa.follow_transition(fail, t.byte);
                self.nfa.states[t.next].fail = fail;
                self.nfa.copy_matches(fail, t.next)?;
            }
            // If the start state is a match state, then this automaton can
            // match the empty string. This implies all states are match states
            // since every position matches the empty string, so copy the
            // matches from the start state to every state. Strictly speaking,
            // this is only necessary for overlapping matches since each
            // non-empty non-start match state needs to report empty matches
            // in addition to its own. For the non-overlapping case, such
            // states only report the first match, which is never empty since
            // it isn't a start state.
            if !is_leftmost {
                self.nfa
                    .copy_matches(self.nfa.special.start_unanchored_id, id)?;
            }
        }
        Ok(())
    }

    /// Shuffle the states so that they appear in this sequence:
    ///
    ///   DEAD, FAIL, MATCH..., START, START, NON-MATCH...
    ///
    /// The idea here is that if we know how special states are laid out in our
    /// transition table, then we can determine what "kind" of state we're in
    /// just by comparing our current state ID with a particular value. In this
    /// way, we avoid doing extra memory lookups.
    ///
    /// Before shuffling begins, our states look something like this:
    ///
    ///   DEAD, FAIL, START, START, (MATCH | NON-MATCH)...
    ///
    /// So all we need to do is move all of the MATCH states so that they
    /// all appear before any NON-MATCH state, like so:
    ///
    ///   DEAD, FAIL, START, START, MATCH... NON-MATCH...
    ///
    /// Then it's just a simple matter of swapping the two START states with
    /// the last two MATCH states.
    ///
    /// (This is the same technique used for fully compiled DFAs in
    /// regex-automata.)
    fn shuffle(&mut self) {
        let old_start_uid = self.nfa.special.start_unanchored_id;
        let old_start_aid = self.nfa.special.start_anchored_id;
        assert!(old_start_uid < old_start_aid);
        assert_eq!(
            3,
            old_start_aid.as_usize(),
            "anchored start state should be at index 3"
        );
        // We implement shuffling by a sequence of pairwise swaps of states.
        // Since we have a number of things referencing states via their
        // IDs and swapping them changes their IDs, we need to record every
        // swap we make so that we can remap IDs. The remapper handles this
        // book-keeping for us.
        let mut remapper = Remapper::new(&self.nfa, 0);
        // The way we proceed here is by moving all match states so that
        // they directly follow the start states. So it will go: DEAD, FAIL,
        // START-UNANCHORED, START-ANCHORED, MATCH, ..., NON-MATCH, ...
        //
        // To do that, we proceed forward through all states after
        // START-ANCHORED and swap match states so that they appear before all
        // non-match states.
        let mut next_avail = StateID::from(4u8);
        for i in next_avail.as_usize()..self.nfa.states.len() {
            let sid = StateID::new(i).unwrap();
            if !self.nfa.states[sid].is_match() {
                continue;
            }
            remapper.swap(&mut self.nfa, sid, next_avail);
            // The key invariant here is that only non-match states exist
            // between 'next_avail' and 'sid' (with them being potentially
            // equivalent). Thus, incrementing 'next_avail' by 1 is guaranteed
            // to land on the leftmost non-match state. (Unless 'next_avail'
            // and 'sid' are equivalent, in which case, a swap will occur but
            // it is a no-op.)
            next_avail = StateID::new(next_avail.one_more()).unwrap();
        }
        // Now we'd like to move the start states to immediately following the
        // match states. (The start states may themselves be match states, but
        // we'll handle that later.) We arrange the states this way so that we
        // don't necessarily need to check whether a state is a start state or
        // not before checking whether a state is a match state. For example,
        // we'd like to be able to write this as our state machine loop:
        //
        //   sid = start()
        //   for byte in haystack:
        //     sid = next(sid, byte)
        //     if sid <= nfa.max_start_id:
        //       if sid <= nfa.max_dead_id:
        //         # search complete
        //       elif sid <= nfa.max_match_id:
        //         # found match
        //
        // The important context here is that we might not want to look for
        // start states at all. Namely, if a searcher doesn't have a prefilter,
        // then there is no reason to care about whether we're in a start state
        // or not. And indeed, if we did check for it, this very hot loop would
        // ping pong between the special state handling and the main state
        // transition logic. This in turn stalls the CPU by killing branch
        // prediction.
        //
        // So essentially, we really want to be able to "forget" that start
        // states even exist and this is why we put them at the end.
        let new_start_aid =
            StateID::new(next_avail.as_usize().checked_sub(1).unwrap())
                .unwrap();
        remapper.swap(&mut self.nfa, old_start_aid, new_start_aid);
        let new_start_uid =
            StateID::new(next_avail.as_usize().checked_sub(2).unwrap())
                .unwrap();
        remapper.swap(&mut self.nfa, old_start_uid, new_start_uid);
        let new_max_match_id =
            StateID::new(next_avail.as_usize().checked_sub(3).unwrap())
                .unwrap();
        self.nfa.special.max_match_id = new_max_match_id;
        self.nfa.special.start_unanchored_id = new_start_uid;
        self.nfa.special.start_anchored_id = new_start_aid;
        // If one start state is a match state, then they both are.
        if self.nfa.states[self.nfa.special.start_anchored_id].is_match() {
            self.nfa.special.max_match_id = self.nfa.special.start_anchored_id;
        }
        remapper.remap(&mut self.nfa);
    }

    /// Attempts to convert the transition representation of a subset of states
    /// in this NFA from sparse to dense. This can greatly improve search
    /// performance since states with a higher number of transitions tend to
    /// correlate with very active states.
    ///
    /// We generally only densify states that are close to the start state.
    /// These tend to be the most active states and thus benefit from a dense
    /// representation more than other states.
    ///
    /// This tends to best balance between memory usage and performance. In
    /// particular, the *vast majority* of all states in a typical Aho-Corasick
    /// automaton have only 1 transition and are usually farther from the start
    /// state and thus don't get densified.
    ///
    /// Note that this doesn't remove the sparse representation of transitions
    /// for states that are densified. It could be done, but actually removing
    /// entries from `NFA::sparse` is likely more expensive than it's worth.
    fn densify(&mut self) -> Result<(), BuildError> {
        for i in 0..self.nfa.states.len() {
            let sid = StateID::new(i).unwrap();
            // Don't bother densifying states that are only used as sentinels.
            if sid == NFA::DEAD || sid == NFA::FAIL {
                continue;
            }
            // Only densify states that are "close enough" to the start state.
            if self.nfa.states[sid].depth.as_usize()
                >= self.builder.dense_depth
            {
                continue;
            }
            let dense = self.nfa.alloc_dense_state()?;
            let mut prev_link = None;
            while let Some(link) = self.nfa.next_link(sid, prev_link) {
                prev_link = Some(link);
                let t = self.nfa.sparse[link];

                let class = usize::from(self.nfa.byte_classes.get(t.byte));
                let index = dense.as_usize() + class;
                self.nfa.dense[index] = t.next;
            }
            self.nfa.states[sid].dense = dense;
        }
        Ok(())
    }

    /// Returns a set that tracked queued states.
    ///
    /// This is only necessary when ASCII case insensitivity is enabled, since
    /// it is the only way to visit the same state twice. Otherwise, this
    /// returns an inert set that nevers adds anything and always reports
    /// `false` for every member test.
    fn queued_set(&self) -> QueuedSet {
        if self.builder.ascii_case_insensitive {
            QueuedSet::active()
        } else {
            QueuedSet::inert()
        }
    }

    /// Initializes the unanchored start state by making it dense. This is
    /// achieved by explicitly setting every transition to the FAIL state.
    /// This isn't necessary for correctness, since any missing transition is
    /// automatically assumed to be mapped to the FAIL state. We do this to
    /// make the unanchored starting state dense, and thus in turn make
    /// transition lookups on it faster. (Which is worth doing because it's
    /// the most active state.)
    fn init_unanchored_start_state(&mut self) -> Result<(), BuildError> {
        let start_uid = self.nfa.special.start_unanchored_id;
        let start_aid = self.nfa.special.start_anchored_id;
        self.nfa.init_full_state(start_uid, NFA::FAIL)?;
        self.nfa.init_full_state(start_aid, NFA::FAIL)?;
        Ok(())
    }

    /// Setup the anchored start state by copying all of the transitions and
    /// matches from the unanchored starting state with one change: the failure
    /// transition is changed to the DEAD state, so that for any undefined
    /// transitions, the search will stop.
    fn set_anchored_start_state(&mut self) -> Result<(), BuildError> {
        let start_uid = self.nfa.special.start_unanchored_id;
        let start_aid = self.nfa.special.start_anchored_id;
        let (mut uprev_link, mut aprev_link) = (None, None);
        loop {
            let unext = self.nfa.next_link(start_uid, uprev_link);
            let anext = self.nfa.next_link(start_aid, aprev_link);
            let (ulink, alink) = match (unext, anext) {
                (Some(ulink), Some(alink)) => (ulink, alink),
                (None, None) => break,
                _ => unreachable!(),
            };
            uprev_link = Some(ulink);
            aprev_link = Some(alink);
            self.nfa.sparse[alink].next = self.nfa.sparse[ulink].next;
        }
        self.nfa.copy_matches(start_uid, start_aid)?;
        // This is the main difference between the unanchored and anchored
        // starting states. If a lookup on an anchored starting state fails,
        // then the search should stop.
        //
        // N.B. This assumes that the loop on the unanchored starting state
        // hasn't been created yet.
        self.nfa.states[start_aid].fail = NFA::DEAD;
        Ok(())
    }

    /// Set the failure transitions on the start state to loop back to the
    /// start state. This effectively permits the Aho-Corasick automaton to
    /// match at any position. This is also required for finding the next
    /// state to terminate, namely, finding the next state should never return
    /// a fail_id.
    ///
    /// This must be done after building the initial trie, since trie
    /// construction depends on transitions to `fail_id` to determine whether a
    /// state already exists or not.
    fn add_unanchored_start_state_loop(&mut self) {
        let start_uid = self.nfa.special.start_unanchored_id;
        let mut prev_link = None;
        while let Some(link) = self.nfa.next_link(start_uid, prev_link) {
            prev_link = Some(link);
            if self.nfa.sparse[link].next() == NFA::FAIL {
                self.nfa.sparse[link].next = start_uid;
            }
        }
    }

    /// Remove the start state loop by rewriting any transitions on the start
    /// state back to the start state with transitions to the dead state.
    ///
    /// The loop is only closed when two conditions are met: the start state
    /// is a match state and the match kind is leftmost-first or
    /// leftmost-longest.
    ///
    /// The reason for this is that under leftmost semantics, a start state
    /// that is also a match implies that we should never restart the search
    /// process. We allow normal transitions out of the start state, but if
    /// none exist, we transition to the dead state, which signals that
    /// searching should stop.
    fn close_start_state_loop_for_leftmost(&mut self) {
        let start_uid = self.nfa.special.start_unanchored_id;
        let start = &mut self.nfa.states[start_uid];
        let dense = start.dense;
        if self.builder.match_kind.is_leftmost() && start.is_match() {
            let mut prev_link = None;
            while let Some(link) = self.nfa.next_link(start_uid, prev_link) {
                prev_link = Some(link);
                if self.nfa.sparse[link].next() == start_uid {
                    self.nfa.sparse[link].next = NFA::DEAD;
                    if dense != StateID::ZERO {
                        let b = self.nfa.sparse[link].byte;
                        let class = usize::from(self.nfa.byte_classes.get(b));
                        self.nfa.dense[dense.as_usize() + class] = NFA::DEAD;
                    }
                }
            }
        }
    }

    /// Sets all transitions on the dead state to point back to the dead state.
    /// Normally, missing transitions map back to the failure state, but the
    /// point of the dead state is to act as a sink that can never be escaped.
    fn add_dead_state_loop(&mut self) -> Result<(), BuildError> {
        self.nfa.init_full_state(NFA::DEAD, NFA::DEAD)?;
        Ok(())
    }
}

/// A set of state identifiers used to avoid revisiting the same state multiple
/// times when filling in failure transitions.
///
/// This set has an "inert" and an "active" mode. When inert, the set never
/// stores anything and always returns `false` for every member test. This is
/// useful to avoid the performance and memory overhead of maintaining this
/// set when it is not needed.
#[derive(Debug)]
struct QueuedSet {
    set: Option<BTreeSet<StateID>>,
}

impl QueuedSet {
    /// Return an inert set that returns `false` for every state ID membership
    /// test.
    fn inert() -> QueuedSet {
        QueuedSet { set: None }
    }

    /// Return an active set that tracks state ID membership.
    fn active() -> QueuedSet {
        QueuedSet { set: Some(BTreeSet::new()) }
    }

    /// Inserts the given state ID into this set. (If the set is inert, then
    /// this is a no-op.)
    fn insert(&mut self, state_id: StateID) {
        if let Some(ref mut set) = self.set {
            set.insert(state_id);
        }
    }

    /// Returns true if and only if the given state ID is in this set. If the
    /// set is inert, this always returns false.
    fn contains(&self, state_id: StateID) -> bool {
        match self.set {
            None => false,
            Some(ref set) => set.contains(&state_id),
        }
    }
}

impl core::fmt::Debug for NFA {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        use crate::{
            automaton::{fmt_state_indicator, sparse_transitions},
            util::debug::DebugByte,
        };

        writeln!(f, "noncontiguous::NFA(")?;
        for (sid, state) in self.states.iter().with_state_ids() {
            // The FAIL state doesn't actually have space for a state allocated
            // for it, so we have to treat it as a special case.
            if sid == NFA::FAIL {
                writeln!(f, "F {:06}:", sid.as_usize())?;
                continue;
            }
            fmt_state_indicator(f, self, sid)?;
            write!(
                f,
                "{:06}({:06}): ",
                sid.as_usize(),
                state.fail.as_usize()
            )?;

            let it = sparse_transitions(
                self.iter_trans(sid).map(|t| (t.byte, t.next)),
            )
            .enumerate();
            for (i, (start, end, sid)) in it {
                if i > 0 {
                    write!(f, ", ")?;
                }
                if start == end {
                    write!(
                        f,
                        "{:?} => {:?}",
                        DebugByte(start),
                        sid.as_usize()
                    )?;
                } else {
                    write!(
                        f,
                        "{:?}-{:?} => {:?}",
                        DebugByte(start),
                        DebugByte(end),
                        sid.as_usize()
                    )?;
                }
            }

            write!(f, "\n")?;
            if self.is_match(sid) {
                write!(f, "         matches: ")?;
                for (i, pid) in self.iter_matches(sid).enumerate() {
                    if i > 0 {
                        write!(f, ", ")?;
                    }
                    write!(f, "{}", pid.as_usize())?;
                }
                write!(f, "\n")?;
            }
        }
        writeln!(f, "match kind: {:?}", self.match_kind)?;
        writeln!(f, "prefilter: {:?}", self.prefilter.is_some())?;
        writeln!(f, "state length: {:?}", self.states.len())?;
        writeln!(f, "pattern length: {:?}", self.patterns_len())?;
        writeln!(f, "shortest pattern length: {:?}", self.min_pattern_len)?;
        writeln!(f, "longest pattern length: {:?}", self.max_pattern_len)?;
        writeln!(f, "memory usage: {:?}", self.memory_usage())?;
        writeln!(f, ")")?;
        Ok(())
    }
}