jiff/error.rs
1use crate::{shared::util::error::Error as SharedError, util::sync::Arc};
2
3/// Creates a new ad hoc error with no causal chain.
4///
5/// This accepts the same arguments as the `format!` macro. The error it
6/// creates is just a wrapper around the string created by `format!`.
7macro_rules! err {
8 ($($tt:tt)*) => {{
9 crate::error::Error::adhoc_from_args(format_args!($($tt)*))
10 }}
11}
12
13pub(crate) use err;
14
15/// An error that can occur in this crate.
16///
17/// The most common type of error is a result of overflow. But other errors
18/// exist as well:
19///
20/// * Time zone database lookup failure.
21/// * Configuration problem. (For example, trying to round a span with calendar
22/// units without providing a relative datetime.)
23/// * An I/O error as a result of trying to open a time zone database from a
24/// directory via
25/// [`TimeZoneDatabase::from_dir`](crate::tz::TimeZoneDatabase::from_dir).
26/// * Parse errors.
27///
28/// # Introspection is limited
29///
30/// Other than implementing the [`std::error::Error`] trait when the
31/// `std` feature is enabled, the [`core::fmt::Debug`] trait and the
32/// [`core::fmt::Display`] trait, this error type currently provides no
33/// introspection capabilities.
34///
35/// # Design
36///
37/// This crate follows the "One True God Error Type Pattern," where only one
38/// error type exists for a variety of different operations. This design was
39/// chosen after attempting to provide finer grained error types. But finer
40/// grained error types proved difficult in the face of composition.
41///
42/// More about this design choice can be found in a GitHub issue
43/// [about error types].
44///
45/// [about error types]: https://github.com/BurntSushi/jiff/issues/8
46#[derive(Clone)]
47pub struct Error {
48 /// The internal representation of an error.
49 ///
50 /// This is in an `Arc` to make an `Error` cloneable. It could otherwise
51 /// be automatically cloneable, but it embeds a `std::io::Error` when the
52 /// `std` feature is enabled, which isn't cloneable.
53 ///
54 /// This also makes clones cheap. And it also make the size of error equal
55 /// to one word (although a `Box` would achieve that last goal). This is
56 /// why we put the `Arc` here instead of on `std::io::Error` directly.
57 inner: Option<Arc<ErrorInner>>,
58}
59
60#[derive(Debug)]
61#[cfg_attr(not(feature = "alloc"), derive(Clone))]
62struct ErrorInner {
63 kind: ErrorKind,
64 #[cfg(feature = "alloc")]
65 cause: Option<Error>,
66}
67
68/// The underlying kind of a [`Error`].
69#[derive(Debug)]
70#[cfg_attr(not(feature = "alloc"), derive(Clone))]
71enum ErrorKind {
72 /// An ad hoc error that is constructed from anything that implements
73 /// the `core::fmt::Display` trait.
74 ///
75 /// In theory we try to avoid these, but they tend to be awfully
76 /// convenient. In practice, we use them a lot, and only use a structured
77 /// representation when a lot of different error cases fit neatly into a
78 /// structure (like range errors).
79 Adhoc(AdhocError),
80 /// An error that occurs when a number is not within its allowed range.
81 ///
82 /// This can occur directly as a result of a number provided by the caller
83 /// of a public API, or as a result of an operation on a number that
84 /// results in it being out of range.
85 Range(RangeError),
86 /// An error that occurs within `jiff::shared`.
87 ///
88 /// It has its own error type to avoid bringing in this much bigger error
89 /// type.
90 Shared(SharedError),
91 /// An error associated with a file path.
92 ///
93 /// This is generally expected to always have a cause attached to it
94 /// explaining what went wrong. The error variant is just a path to make
95 /// it composable with other error types.
96 ///
97 /// The cause is typically `Adhoc` or `IO`.
98 ///
99 /// When `std` is not enabled, this variant can never be constructed.
100 #[allow(dead_code)] // not used in some feature configs
101 FilePath(FilePathError),
102 /// An error that occurs when interacting with the file system.
103 ///
104 /// This is effectively a wrapper around `std::io::Error` coupled with a
105 /// `std::path::PathBuf`.
106 ///
107 /// When `std` is not enabled, this variant can never be constructed.
108 #[allow(dead_code)] // not used in some feature configs
109 IO(IOError),
110}
111
112impl Error {
113 /// Creates a new "ad hoc" error value.
114 ///
115 /// An ad hoc error value is just an opaque string. In theory we should
116 /// avoid creating such error values, but in practice, they are extremely
117 /// convenient. And the alternative is quite brutal given the varied ways
118 /// in which things in a datetime library can fail. (Especially parsing
119 /// errors.)
120 #[cfg(feature = "alloc")]
121 pub(crate) fn adhoc<'a>(message: impl core::fmt::Display + 'a) -> Error {
122 Error::from(ErrorKind::Adhoc(AdhocError::from_display(message)))
123 }
124
125 /// Like `Error::adhoc`, but accepts a `core::fmt::Arguments`.
126 ///
127 /// This is used with the `err!` macro so that we can thread a
128 /// `core::fmt::Arguments` down. This lets us extract a `&'static str`
129 /// from some messages in core-only mode and provide somewhat decent error
130 /// messages in some cases.
131 pub(crate) fn adhoc_from_args<'a>(
132 message: core::fmt::Arguments<'a>,
133 ) -> Error {
134 Error::from(ErrorKind::Adhoc(AdhocError::from_args(message)))
135 }
136
137 /// Like `Error::adhoc`, but creates an error from a `&'static str`
138 /// directly.
139 ///
140 /// This is useful in contexts where you know you have a `&'static str`,
141 /// and avoids relying on `alloc`-only routines like `Error::adhoc`.
142 pub(crate) fn adhoc_from_static_str(message: &'static str) -> Error {
143 Error::from(ErrorKind::Adhoc(AdhocError::from_static_str(message)))
144 }
145
146 /// Creates a new error indicating that a `given` value is out of the
147 /// specified `min..=max` range. The given `what` label is used in the
148 /// error message as a human readable description of what exactly is out
149 /// of range. (e.g., "seconds")
150 pub(crate) fn range(
151 what: &'static str,
152 given: impl Into<i128>,
153 min: impl Into<i128>,
154 max: impl Into<i128>,
155 ) -> Error {
156 Error::from(ErrorKind::Range(RangeError::new(what, given, min, max)))
157 }
158
159 /// Creates a new error from the special "shared" error type.
160 pub(crate) fn shared(err: SharedError) -> Error {
161 Error::from(ErrorKind::Shared(err))
162 }
163
164 /// A convenience constructor for building an I/O error.
165 ///
166 /// This returns an error that is just a simple wrapper around the
167 /// `std::io::Error` type. In general, callers should alwasys attach some
168 /// kind of context to this error (like a file path).
169 ///
170 /// This is only available when the `std` feature is enabled.
171 #[cfg(feature = "std")]
172 pub(crate) fn io(err: std::io::Error) -> Error {
173 Error::from(ErrorKind::IO(IOError { err }))
174 }
175
176 /// Contextualizes this error by associating the given file path with it.
177 ///
178 /// This is a convenience routine for calling `Error::context` with a
179 /// `FilePathError`.
180 ///
181 /// This is only available when the `std` feature is enabled.
182 #[cfg(feature = "tzdb-zoneinfo")]
183 pub(crate) fn path(self, path: impl Into<std::path::PathBuf>) -> Error {
184 let err = Error::from(ErrorKind::FilePath(FilePathError {
185 path: path.into(),
186 }));
187 self.context(err)
188 }
189
190 /*
191 /// Creates a new "unknown" Jiff error.
192 ///
193 /// The benefit of this API is that it permits creating an `Error` in a
194 /// `const` context. But the error message quality is currently pretty
195 /// bad: it's just a generic "unknown jiff error" message.
196 ///
197 /// This could be improved to take a `&'static str`, but I believe this
198 /// will require pointer tagging in order to avoid increasing the size of
199 /// `Error`. (Which is important, because of how many perf sensitive
200 /// APIs return a `Result<T, Error>` in Jiff.
201 pub(crate) const fn unknown() -> Error {
202 Error { inner: None }
203 }
204 */
205}
206
207#[cfg(feature = "std")]
208impl std::error::Error for Error {}
209
210impl core::fmt::Display for Error {
211 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
212 #[cfg(feature = "alloc")]
213 {
214 let mut err = self;
215 loop {
216 let Some(ref inner) = err.inner else {
217 write!(f, "unknown jiff error")?;
218 break;
219 };
220 write!(f, "{}", inner.kind)?;
221 err = match inner.cause.as_ref() {
222 None => break,
223 Some(err) => err,
224 };
225 write!(f, ": ")?;
226 }
227 Ok(())
228 }
229 #[cfg(not(feature = "alloc"))]
230 {
231 match self.inner {
232 None => write!(f, "unknown jiff error"),
233 Some(ref inner) => write!(f, "{}", inner.kind),
234 }
235 }
236 }
237}
238
239impl core::fmt::Debug for Error {
240 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
241 if !f.alternate() {
242 core::fmt::Display::fmt(self, f)
243 } else {
244 let Some(ref inner) = self.inner else {
245 return f
246 .debug_struct("Error")
247 .field("kind", &"None")
248 .finish();
249 };
250 #[cfg(feature = "alloc")]
251 {
252 f.debug_struct("Error")
253 .field("kind", &inner.kind)
254 .field("cause", &inner.cause)
255 .finish()
256 }
257 #[cfg(not(feature = "alloc"))]
258 {
259 f.debug_struct("Error").field("kind", &inner.kind).finish()
260 }
261 }
262 }
263}
264
265impl core::fmt::Display for ErrorKind {
266 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
267 match *self {
268 ErrorKind::Adhoc(ref msg) => msg.fmt(f),
269 ErrorKind::Range(ref err) => err.fmt(f),
270 ErrorKind::Shared(ref err) => err.fmt(f),
271 ErrorKind::FilePath(ref err) => err.fmt(f),
272 ErrorKind::IO(ref err) => err.fmt(f),
273 }
274 }
275}
276
277impl From<ErrorKind> for Error {
278 fn from(kind: ErrorKind) -> Error {
279 #[cfg(feature = "alloc")]
280 {
281 Error { inner: Some(Arc::new(ErrorInner { kind, cause: None })) }
282 }
283 #[cfg(not(feature = "alloc"))]
284 {
285 Error { inner: Some(Arc::new(ErrorInner { kind })) }
286 }
287 }
288}
289
290/// A generic error message.
291///
292/// This somewhat unfortunately represents most of the errors in Jiff. When I
293/// first started building Jiff, I had a goal of making every error structured.
294/// But this ended up being a ton of work, and I find it much easier and nicer
295/// for error messages to be embedded where they occur.
296#[cfg_attr(not(feature = "alloc"), derive(Clone))]
297struct AdhocError {
298 #[cfg(feature = "alloc")]
299 message: alloc::boxed::Box<str>,
300 #[cfg(not(feature = "alloc"))]
301 message: &'static str,
302}
303
304impl AdhocError {
305 #[cfg(feature = "alloc")]
306 fn from_display<'a>(message: impl core::fmt::Display + 'a) -> AdhocError {
307 use alloc::string::ToString;
308
309 let message = message.to_string().into_boxed_str();
310 AdhocError { message }
311 }
312
313 fn from_args<'a>(message: core::fmt::Arguments<'a>) -> AdhocError {
314 #[cfg(feature = "alloc")]
315 {
316 AdhocError::from_display(message)
317 }
318 #[cfg(not(feature = "alloc"))]
319 {
320 let message = message.as_str().unwrap_or(
321 "unknown Jiff error (better error messages require \
322 enabling the `alloc` feature for the `jiff` crate)",
323 );
324 AdhocError::from_static_str(message)
325 }
326 }
327
328 fn from_static_str(message: &'static str) -> AdhocError {
329 #[cfg(feature = "alloc")]
330 {
331 AdhocError::from_display(message)
332 }
333 #[cfg(not(feature = "alloc"))]
334 {
335 AdhocError { message }
336 }
337 }
338}
339
340#[cfg(feature = "std")]
341impl std::error::Error for AdhocError {}
342
343impl core::fmt::Display for AdhocError {
344 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
345 core::fmt::Display::fmt(&self.message, f)
346 }
347}
348
349impl core::fmt::Debug for AdhocError {
350 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
351 core::fmt::Debug::fmt(&self.message, f)
352 }
353}
354
355/// An error that occurs when an input value is out of bounds.
356///
357/// The error message produced by this type will include a name describing
358/// which input was out of bounds, the value given and its minimum and maximum
359/// allowed values.
360#[derive(Debug)]
361#[cfg_attr(not(feature = "alloc"), derive(Clone))]
362struct RangeError {
363 what: &'static str,
364 #[cfg(feature = "alloc")]
365 given: i128,
366 #[cfg(feature = "alloc")]
367 min: i128,
368 #[cfg(feature = "alloc")]
369 max: i128,
370}
371
372impl RangeError {
373 fn new(
374 what: &'static str,
375 _given: impl Into<i128>,
376 _min: impl Into<i128>,
377 _max: impl Into<i128>,
378 ) -> RangeError {
379 RangeError {
380 what,
381 #[cfg(feature = "alloc")]
382 given: _given.into(),
383 #[cfg(feature = "alloc")]
384 min: _min.into(),
385 #[cfg(feature = "alloc")]
386 max: _max.into(),
387 }
388 }
389}
390
391#[cfg(feature = "std")]
392impl std::error::Error for RangeError {}
393
394impl core::fmt::Display for RangeError {
395 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
396 #[cfg(feature = "alloc")]
397 {
398 let RangeError { what, given, min, max } = *self;
399 write!(
400 f,
401 "parameter '{what}' with value {given} \
402 is not in the required range of {min}..={max}",
403 )
404 }
405 #[cfg(not(feature = "alloc"))]
406 {
407 let RangeError { what } = *self;
408 write!(f, "parameter '{what}' is not in the required range")
409 }
410 }
411}
412
413/// A `std::io::Error`.
414///
415/// This type is itself always available, even when the `std` feature is not
416/// enabled. When `std` is not enabled, a value of this type can never be
417/// constructed.
418///
419/// Otherwise, this type is a simple wrapper around `std::io::Error`. Its
420/// purpose is to encapsulate the conditional compilation based on the `std`
421/// feature.
422#[cfg_attr(not(feature = "alloc"), derive(Clone))]
423struct IOError {
424 #[cfg(feature = "std")]
425 err: std::io::Error,
426}
427
428#[cfg(feature = "std")]
429impl std::error::Error for IOError {}
430
431impl core::fmt::Display for IOError {
432 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
433 #[cfg(feature = "std")]
434 {
435 write!(f, "{}", self.err)
436 }
437 #[cfg(not(feature = "std"))]
438 {
439 write!(f, "<BUG: SHOULD NOT EXIST>")
440 }
441 }
442}
443
444impl core::fmt::Debug for IOError {
445 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
446 #[cfg(feature = "std")]
447 {
448 f.debug_struct("IOError").field("err", &self.err).finish()
449 }
450 #[cfg(not(feature = "std"))]
451 {
452 write!(f, "<BUG: SHOULD NOT EXIST>")
453 }
454 }
455}
456
457#[cfg(feature = "std")]
458impl From<std::io::Error> for IOError {
459 fn from(err: std::io::Error) -> IOError {
460 IOError { err }
461 }
462}
463
464#[cfg_attr(not(feature = "alloc"), derive(Clone))]
465struct FilePathError {
466 #[cfg(feature = "std")]
467 path: std::path::PathBuf,
468}
469
470#[cfg(feature = "std")]
471impl std::error::Error for FilePathError {}
472
473impl core::fmt::Display for FilePathError {
474 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
475 #[cfg(feature = "std")]
476 {
477 write!(f, "{}", self.path.display())
478 }
479 #[cfg(not(feature = "std"))]
480 {
481 write!(f, "<BUG: SHOULD NOT EXIST>")
482 }
483 }
484}
485
486impl core::fmt::Debug for FilePathError {
487 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
488 #[cfg(feature = "std")]
489 {
490 f.debug_struct("FilePathError").field("path", &self.path).finish()
491 }
492 #[cfg(not(feature = "std"))]
493 {
494 write!(f, "<BUG: SHOULD NOT EXIST>")
495 }
496 }
497}
498
499/// A simple trait to encapsulate automatic conversion to `Error`.
500///
501/// This trait basically exists to make `Error::context` work without needing
502/// to rely on public `From` impls. For example, without this trait, we might
503/// otherwise write `impl From<String> for Error`. But this would make it part
504/// of the public API. Which... maybe we should do, but at time of writing,
505/// I'm starting very conservative so that we can evolve errors in semver
506/// compatible ways.
507pub(crate) trait IntoError {
508 fn into_error(self) -> Error;
509}
510
511impl IntoError for Error {
512 fn into_error(self) -> Error {
513 self
514 }
515}
516
517impl IntoError for &'static str {
518 fn into_error(self) -> Error {
519 Error::adhoc_from_static_str(self)
520 }
521}
522
523#[cfg(feature = "alloc")]
524impl IntoError for alloc::string::String {
525 fn into_error(self) -> Error {
526 Error::adhoc(self)
527 }
528}
529
530/// A trait for contextualizing error values.
531///
532/// This makes it easy to contextualize either `Error` or `Result<T, Error>`.
533/// Specifically, in the latter case, it absolves one of the need to call
534/// `map_err` everywhere one wants to add context to an error.
535///
536/// This trick was borrowed from `anyhow`.
537pub(crate) trait ErrorContext {
538 /// Contextualize the given consequent error with this (`self`) error as
539 /// the cause.
540 ///
541 /// This is equivalent to saying that "consequent is caused by self."
542 ///
543 /// Note that if an `Error` is given for `kind`, then this panics if it has
544 /// a cause. (Because the cause would otherwise be dropped. An error causal
545 /// chain is just a linked list, not a tree.)
546 fn context(self, consequent: impl IntoError) -> Self;
547
548 /// Like `context`, but hides error construction within a closure.
549 ///
550 /// This is useful if the creation of the consequent error is not otherwise
551 /// guarded and when error construction is potentially "costly" (i.e., it
552 /// allocates). The closure avoids paying the cost of contextual error
553 /// creation in the happy path.
554 ///
555 /// Usually this only makes sense to use on a `Result<T, Error>`, otherwise
556 /// the closure is just executed immediately anyway.
557 fn with_context<E: IntoError>(
558 self,
559 consequent: impl FnOnce() -> E,
560 ) -> Self;
561}
562
563impl ErrorContext for Error {
564 #[cfg_attr(feature = "perf-inline", inline(always))]
565 fn context(self, consequent: impl IntoError) -> Error {
566 #[cfg(feature = "alloc")]
567 {
568 let mut err = consequent.into_error();
569 if err.inner.is_none() {
570 err = err!("unknown jiff error");
571 }
572 let inner = err.inner.as_mut().unwrap();
573 assert!(
574 inner.cause.is_none(),
575 "cause of consequence must be `None`"
576 );
577 // OK because we just created this error so the Arc
578 // has one reference.
579 Arc::get_mut(inner).unwrap().cause = Some(self);
580 err
581 }
582 #[cfg(not(feature = "alloc"))]
583 {
584 // We just completely drop `self`. :-(
585 consequent.into_error()
586 }
587 }
588
589 #[cfg_attr(feature = "perf-inline", inline(always))]
590 fn with_context<E: IntoError>(
591 self,
592 consequent: impl FnOnce() -> E,
593 ) -> Error {
594 #[cfg(feature = "alloc")]
595 {
596 let mut err = consequent().into_error();
597 if err.inner.is_none() {
598 err = err!("unknown jiff error");
599 }
600 let inner = err.inner.as_mut().unwrap();
601 assert!(
602 inner.cause.is_none(),
603 "cause of consequence must be `None`"
604 );
605 // OK because we just created this error so the Arc
606 // has one reference.
607 Arc::get_mut(inner).unwrap().cause = Some(self);
608 err
609 }
610 #[cfg(not(feature = "alloc"))]
611 {
612 // We just completely drop `self`. :-(
613 consequent().into_error()
614 }
615 }
616}
617
618impl<T> ErrorContext for Result<T, Error> {
619 #[cfg_attr(feature = "perf-inline", inline(always))]
620 fn context(self, consequent: impl IntoError) -> Result<T, Error> {
621 self.map_err(|err| err.context(consequent))
622 }
623
624 #[cfg_attr(feature = "perf-inline", inline(always))]
625 fn with_context<E: IntoError>(
626 self,
627 consequent: impl FnOnce() -> E,
628 ) -> Result<T, Error> {
629 self.map_err(|err| err.with_context(consequent))
630 }
631}
632
633#[cfg(test)]
634mod tests {
635 use super::*;
636
637 // We test that our 'Error' type is the size we expect. This isn't an API
638 // guarantee, but if the size increases, we really want to make sure we
639 // decide to do that intentionally. So this should be a speed bump. And in
640 // general, we should not increase the size without a very good reason.
641 #[test]
642 fn error_size() {
643 let mut expected_size = core::mem::size_of::<usize>();
644 if !cfg!(feature = "alloc") {
645 // oooowwwwwwwwwwwch.
646 //
647 // Like, this is horrible, right? core-only environments are
648 // precisely the place where one want to keep things slim. But
649 // in core-only, I don't know of a way to introduce any sort of
650 // indirection in the library level without using a completely
651 // different API.
652 //
653 // This is what makes me doubt that core-only Jiff is actually
654 // useful. In what context are people using a huge library like
655 // Jiff but can't define a small little heap allocator?
656 //
657 // OK, this used to be `expected_size *= 10`, but I slimmed it down
658 // to x3. Still kinda sucks right? If we tried harder, I think we
659 // could probably slim this down more. And if we were willing to
660 // sacrifice error message quality even more (like, all the way),
661 // then we could make `Error` a zero sized type. Which might
662 // actually be the right trade-off for core-only, but I'll hold off
663 // until we have some real world use cases.
664 expected_size *= 3;
665 }
666 assert_eq!(expected_size, core::mem::size_of::<Error>());
667 }
668}