memchr/memmem/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
/*!
This module provides forward and reverse substring search routines.

Unlike the standard library's substring search routines, these work on
arbitrary bytes. For all non-empty needles, these routines will report exactly
the same values as the corresponding routines in the standard library. For
the empty needle, the standard library reports matches only at valid UTF-8
boundaries, where as these routines will report matches at every position.

Other than being able to work on arbitrary bytes, the primary reason to prefer
these routines over the standard library routines is that these will generally
be faster. In some cases, significantly so.

# Example: iterating over substring matches

This example shows how to use [`find_iter`] to find occurrences of a substring
in a haystack.

```
use memchr::memmem;

let haystack = b"foo bar foo baz foo";

let mut it = memmem::find_iter(haystack, "foo");
assert_eq!(Some(0), it.next());
assert_eq!(Some(8), it.next());
assert_eq!(Some(16), it.next());
assert_eq!(None, it.next());
```

# Example: iterating over substring matches in reverse

This example shows how to use [`rfind_iter`] to find occurrences of a substring
in a haystack starting from the end of the haystack.

**NOTE:** This module does not implement double ended iterators, so reverse
searches aren't done by calling `rev` on a forward iterator.

```
use memchr::memmem;

let haystack = b"foo bar foo baz foo";

let mut it = memmem::rfind_iter(haystack, "foo");
assert_eq!(Some(16), it.next());
assert_eq!(Some(8), it.next());
assert_eq!(Some(0), it.next());
assert_eq!(None, it.next());
```

# Example: repeating a search for the same needle

It may be possible for the overhead of constructing a substring searcher to be
measurable in some workloads. In cases where the same needle is used to search
many haystacks, it is possible to do construction once and thus to avoid it for
subsequent searches. This can be done with a [`Finder`] (or a [`FinderRev`] for
reverse searches).

```
use memchr::memmem;

let finder = memmem::Finder::new("foo");

assert_eq!(Some(4), finder.find(b"baz foo quux"));
assert_eq!(None, finder.find(b"quux baz bar"));
```
*/

pub use crate::memmem::searcher::PrefilterConfig as Prefilter;

// This is exported here for use in the crate::arch::all::twoway
// implementation. This is essentially an abstraction breaker. Namely, the
// public API of twoway doesn't support providing a prefilter, but its crate
// internal API does. The main reason for this is that I didn't want to do the
// API design required to support it without a concrete use case.
pub(crate) use crate::memmem::searcher::Pre;

use crate::{
    arch::all::{
        packedpair::{DefaultFrequencyRank, HeuristicFrequencyRank},
        rabinkarp,
    },
    cow::CowBytes,
    memmem::searcher::{PrefilterState, Searcher, SearcherRev},
};

mod searcher;

/// Returns an iterator over all non-overlapping occurrences of a substring in
/// a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar foo baz foo";
/// let mut it = memmem::find_iter(haystack, b"foo");
/// assert_eq!(Some(0), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(16), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn find_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
    haystack: &'h [u8],
    needle: &'n N,
) -> FindIter<'h, 'n> {
    FindIter::new(haystack, Finder::new(needle))
}

/// Returns a reverse iterator over all non-overlapping occurrences of a
/// substring in a haystack.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar foo baz foo";
/// let mut it = memmem::rfind_iter(haystack, b"foo");
/// assert_eq!(Some(16), it.next());
/// assert_eq!(Some(8), it.next());
/// assert_eq!(Some(0), it.next());
/// assert_eq!(None, it.next());
/// ```
#[inline]
pub fn rfind_iter<'h, 'n, N: 'n + ?Sized + AsRef<[u8]>>(
    haystack: &'h [u8],
    needle: &'n N,
) -> FindRevIter<'h, 'n> {
    FindRevIter::new(haystack, FinderRev::new(needle))
}

/// Returns the index of the first occurrence of the given needle.
///
/// Note that if you're are searching for the same needle in many different
/// small haystacks, it may be faster to initialize a [`Finder`] once,
/// and reuse it for each search.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), memmem::find(haystack, b"foo"));
/// assert_eq!(Some(4), memmem::find(haystack, b"bar"));
/// assert_eq!(None, memmem::find(haystack, b"quux"));
/// ```
#[inline]
pub fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
    if haystack.len() < 64 {
        rabinkarp::Finder::new(needle).find(haystack, needle)
    } else {
        Finder::new(needle).find(haystack)
    }
}

/// Returns the index of the last occurrence of the given needle.
///
/// Note that if you're are searching for the same needle in many different
/// small haystacks, it may be faster to initialize a [`FinderRev`] once,
/// and reuse it for each search.
///
/// # Complexity
///
/// This routine is guaranteed to have worst case linear time complexity
/// with respect to both the needle and the haystack. That is, this runs
/// in `O(needle.len() + haystack.len())` time.
///
/// This routine is also guaranteed to have worst case constant space
/// complexity.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use memchr::memmem;
///
/// let haystack = b"foo bar baz";
/// assert_eq!(Some(0), memmem::rfind(haystack, b"foo"));
/// assert_eq!(Some(4), memmem::rfind(haystack, b"bar"));
/// assert_eq!(Some(8), memmem::rfind(haystack, b"ba"));
/// assert_eq!(None, memmem::rfind(haystack, b"quux"));
/// ```
#[inline]
pub fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
    if haystack.len() < 64 {
        rabinkarp::FinderRev::new(needle).rfind(haystack, needle)
    } else {
        FinderRev::new(needle).rfind(haystack)
    }
}

/// An iterator over non-overlapping substring matches.
///
/// Matches are reported by the byte offset at which they begin.
///
/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
/// needle.
#[derive(Debug, Clone)]
pub struct FindIter<'h, 'n> {
    haystack: &'h [u8],
    prestate: PrefilterState,
    finder: Finder<'n>,
    pos: usize,
}

impl<'h, 'n> FindIter<'h, 'n> {
    #[inline(always)]
    pub(crate) fn new(
        haystack: &'h [u8],
        finder: Finder<'n>,
    ) -> FindIter<'h, 'n> {
        let prestate = PrefilterState::new();
        FindIter { haystack, prestate, finder, pos: 0 }
    }

    /// Convert this iterator into its owned variant, such that it no longer
    /// borrows the finder and needle.
    ///
    /// If this is already an owned iterator, then this is a no-op. Otherwise,
    /// this copies the needle.
    ///
    /// This is only available when the `alloc` feature is enabled.
    #[cfg(feature = "alloc")]
    #[inline]
    pub fn into_owned(self) -> FindIter<'h, 'static> {
        FindIter {
            haystack: self.haystack,
            prestate: self.prestate,
            finder: self.finder.into_owned(),
            pos: self.pos,
        }
    }
}

impl<'h, 'n> Iterator for FindIter<'h, 'n> {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        let needle = self.finder.needle();
        let haystack = self.haystack.get(self.pos..)?;
        let idx =
            self.finder.searcher.find(&mut self.prestate, haystack, needle)?;

        let pos = self.pos + idx;
        self.pos = pos + needle.len().max(1);

        Some(pos)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        // The largest possible number of non-overlapping matches is the
        // quotient of the haystack and the needle (or the length of the
        // haystack, if the needle is empty)
        match self.haystack.len().checked_sub(self.pos) {
            None => (0, Some(0)),
            Some(haystack_len) => match self.finder.needle().len() {
                // Empty needles always succeed and match at every point
                // (including the very end)
                0 => (
                    haystack_len.saturating_add(1),
                    haystack_len.checked_add(1),
                ),
                needle_len => (0, Some(haystack_len / needle_len)),
            },
        }
    }
}

/// An iterator over non-overlapping substring matches in reverse.
///
/// Matches are reported by the byte offset at which they begin.
///
/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the
/// needle.
#[derive(Clone, Debug)]
pub struct FindRevIter<'h, 'n> {
    haystack: &'h [u8],
    finder: FinderRev<'n>,
    /// When searching with an empty needle, this gets set to `None` after
    /// we've yielded the last element at `0`.
    pos: Option<usize>,
}

impl<'h, 'n> FindRevIter<'h, 'n> {
    #[inline(always)]
    pub(crate) fn new(
        haystack: &'h [u8],
        finder: FinderRev<'n>,
    ) -> FindRevIter<'h, 'n> {
        let pos = Some(haystack.len());
        FindRevIter { haystack, finder, pos }
    }

    /// Convert this iterator into its owned variant, such that it no longer
    /// borrows the finder and needle.
    ///
    /// If this is already an owned iterator, then this is a no-op. Otherwise,
    /// this copies the needle.
    ///
    /// This is only available when the `std` feature is enabled.
    #[cfg(feature = "alloc")]
    #[inline]
    pub fn into_owned(self) -> FindRevIter<'h, 'static> {
        FindRevIter {
            haystack: self.haystack,
            finder: self.finder.into_owned(),
            pos: self.pos,
        }
    }
}

impl<'h, 'n> Iterator for FindRevIter<'h, 'n> {
    type Item = usize;

    fn next(&mut self) -> Option<usize> {
        let pos = match self.pos {
            None => return None,
            Some(pos) => pos,
        };
        let result = self.finder.rfind(&self.haystack[..pos]);
        match result {
            None => None,
            Some(i) => {
                if pos == i {
                    self.pos = pos.checked_sub(1);
                } else {
                    self.pos = Some(i);
                }
                Some(i)
            }
        }
    }
}

/// A single substring searcher fixed to a particular needle.
///
/// The purpose of this type is to permit callers to construct a substring
/// searcher that can be used to search haystacks without the overhead of
/// constructing the searcher in the first place. This is a somewhat niche
/// concern when it's necessary to re-use the same needle to search multiple
/// different haystacks with as little overhead as possible. In general, using
/// [`find`] is good enough, but `Finder` is useful when you can meaningfully
/// observe searcher construction time in a profile.
///
/// When the `std` feature is enabled, then this type has an `into_owned`
/// version which permits building a `Finder` that is not connected to
/// the lifetime of its needle.
#[derive(Clone, Debug)]
pub struct Finder<'n> {
    needle: CowBytes<'n>,
    searcher: Searcher,
}

impl<'n> Finder<'n> {
    /// Create a new finder for the given needle.
    #[inline]
    pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> Finder<'n> {
        FinderBuilder::new().build_forward(needle)
    }

    /// Returns the index of the first occurrence of this needle in the given
    /// haystack.
    ///
    /// # Complexity
    ///
    /// This routine is guaranteed to have worst case linear time complexity
    /// with respect to both the needle and the haystack. That is, this runs
    /// in `O(needle.len() + haystack.len())` time.
    ///
    /// This routine is also guaranteed to have worst case constant space
    /// complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memchr::memmem::Finder;
    ///
    /// let haystack = b"foo bar baz";
    /// assert_eq!(Some(0), Finder::new("foo").find(haystack));
    /// assert_eq!(Some(4), Finder::new("bar").find(haystack));
    /// assert_eq!(None, Finder::new("quux").find(haystack));
    /// ```
    #[inline]
    pub fn find(&self, haystack: &[u8]) -> Option<usize> {
        let mut prestate = PrefilterState::new();
        let needle = self.needle.as_slice();
        self.searcher.find(&mut prestate, haystack, needle)
    }

    /// Returns an iterator over all occurrences of a substring in a haystack.
    ///
    /// # Complexity
    ///
    /// This routine is guaranteed to have worst case linear time complexity
    /// with respect to both the needle and the haystack. That is, this runs
    /// in `O(needle.len() + haystack.len())` time.
    ///
    /// This routine is also guaranteed to have worst case constant space
    /// complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memchr::memmem::Finder;
    ///
    /// let haystack = b"foo bar foo baz foo";
    /// let finder = Finder::new(b"foo");
    /// let mut it = finder.find_iter(haystack);
    /// assert_eq!(Some(0), it.next());
    /// assert_eq!(Some(8), it.next());
    /// assert_eq!(Some(16), it.next());
    /// assert_eq!(None, it.next());
    /// ```
    #[inline]
    pub fn find_iter<'a, 'h>(
        &'a self,
        haystack: &'h [u8],
    ) -> FindIter<'h, 'a> {
        FindIter::new(haystack, self.as_ref())
    }

    /// Convert this finder into its owned variant, such that it no longer
    /// borrows the needle.
    ///
    /// If this is already an owned finder, then this is a no-op. Otherwise,
    /// this copies the needle.
    ///
    /// This is only available when the `alloc` feature is enabled.
    #[cfg(feature = "alloc")]
    #[inline]
    pub fn into_owned(self) -> Finder<'static> {
        Finder {
            needle: self.needle.into_owned(),
            searcher: self.searcher.clone(),
        }
    }

    /// Convert this finder into its borrowed variant.
    ///
    /// This is primarily useful if your finder is owned and you'd like to
    /// store its borrowed variant in some intermediate data structure.
    ///
    /// Note that the lifetime parameter of the returned finder is tied to the
    /// lifetime of `self`, and may be shorter than the `'n` lifetime of the
    /// needle itself. Namely, a finder's needle can be either borrowed or
    /// owned, so the lifetime of the needle returned must necessarily be the
    /// shorter of the two.
    #[inline]
    pub fn as_ref(&self) -> Finder<'_> {
        Finder {
            needle: CowBytes::new(self.needle()),
            searcher: self.searcher.clone(),
        }
    }

    /// Returns the needle that this finder searches for.
    ///
    /// Note that the lifetime of the needle returned is tied to the lifetime
    /// of the finder, and may be shorter than the `'n` lifetime. Namely, a
    /// finder's needle can be either borrowed or owned, so the lifetime of the
    /// needle returned must necessarily be the shorter of the two.
    #[inline]
    pub fn needle(&self) -> &[u8] {
        self.needle.as_slice()
    }
}

/// A single substring reverse searcher fixed to a particular needle.
///
/// The purpose of this type is to permit callers to construct a substring
/// searcher that can be used to search haystacks without the overhead of
/// constructing the searcher in the first place. This is a somewhat niche
/// concern when it's necessary to re-use the same needle to search multiple
/// different haystacks with as little overhead as possible. In general,
/// using [`rfind`] is good enough, but `FinderRev` is useful when you can
/// meaningfully observe searcher construction time in a profile.
///
/// When the `std` feature is enabled, then this type has an `into_owned`
/// version which permits building a `FinderRev` that is not connected to
/// the lifetime of its needle.
#[derive(Clone, Debug)]
pub struct FinderRev<'n> {
    needle: CowBytes<'n>,
    searcher: SearcherRev,
}

impl<'n> FinderRev<'n> {
    /// Create a new reverse finder for the given needle.
    #[inline]
    pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'n B) -> FinderRev<'n> {
        FinderBuilder::new().build_reverse(needle)
    }

    /// Returns the index of the last occurrence of this needle in the given
    /// haystack.
    ///
    /// The haystack may be any type that can be cheaply converted into a
    /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`.
    ///
    /// # Complexity
    ///
    /// This routine is guaranteed to have worst case linear time complexity
    /// with respect to both the needle and the haystack. That is, this runs
    /// in `O(needle.len() + haystack.len())` time.
    ///
    /// This routine is also guaranteed to have worst case constant space
    /// complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memchr::memmem::FinderRev;
    ///
    /// let haystack = b"foo bar baz";
    /// assert_eq!(Some(0), FinderRev::new("foo").rfind(haystack));
    /// assert_eq!(Some(4), FinderRev::new("bar").rfind(haystack));
    /// assert_eq!(None, FinderRev::new("quux").rfind(haystack));
    /// ```
    pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> {
        self.searcher.rfind(haystack.as_ref(), self.needle.as_slice())
    }

    /// Returns a reverse iterator over all occurrences of a substring in a
    /// haystack.
    ///
    /// # Complexity
    ///
    /// This routine is guaranteed to have worst case linear time complexity
    /// with respect to both the needle and the haystack. That is, this runs
    /// in `O(needle.len() + haystack.len())` time.
    ///
    /// This routine is also guaranteed to have worst case constant space
    /// complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use memchr::memmem::FinderRev;
    ///
    /// let haystack = b"foo bar foo baz foo";
    /// let finder = FinderRev::new(b"foo");
    /// let mut it = finder.rfind_iter(haystack);
    /// assert_eq!(Some(16), it.next());
    /// assert_eq!(Some(8), it.next());
    /// assert_eq!(Some(0), it.next());
    /// assert_eq!(None, it.next());
    /// ```
    #[inline]
    pub fn rfind_iter<'a, 'h>(
        &'a self,
        haystack: &'h [u8],
    ) -> FindRevIter<'h, 'a> {
        FindRevIter::new(haystack, self.as_ref())
    }

    /// Convert this finder into its owned variant, such that it no longer
    /// borrows the needle.
    ///
    /// If this is already an owned finder, then this is a no-op. Otherwise,
    /// this copies the needle.
    ///
    /// This is only available when the `std` feature is enabled.
    #[cfg(feature = "alloc")]
    #[inline]
    pub fn into_owned(self) -> FinderRev<'static> {
        FinderRev {
            needle: self.needle.into_owned(),
            searcher: self.searcher.clone(),
        }
    }

    /// Convert this finder into its borrowed variant.
    ///
    /// This is primarily useful if your finder is owned and you'd like to
    /// store its borrowed variant in some intermediate data structure.
    ///
    /// Note that the lifetime parameter of the returned finder is tied to the
    /// lifetime of `self`, and may be shorter than the `'n` lifetime of the
    /// needle itself. Namely, a finder's needle can be either borrowed or
    /// owned, so the lifetime of the needle returned must necessarily be the
    /// shorter of the two.
    #[inline]
    pub fn as_ref(&self) -> FinderRev<'_> {
        FinderRev {
            needle: CowBytes::new(self.needle()),
            searcher: self.searcher.clone(),
        }
    }

    /// Returns the needle that this finder searches for.
    ///
    /// Note that the lifetime of the needle returned is tied to the lifetime
    /// of the finder, and may be shorter than the `'n` lifetime. Namely, a
    /// finder's needle can be either borrowed or owned, so the lifetime of the
    /// needle returned must necessarily be the shorter of the two.
    #[inline]
    pub fn needle(&self) -> &[u8] {
        self.needle.as_slice()
    }
}

/// A builder for constructing non-default forward or reverse memmem finders.
///
/// A builder is primarily useful for configuring a substring searcher.
/// Currently, the only configuration exposed is the ability to disable
/// heuristic prefilters used to speed up certain searches.
#[derive(Clone, Debug, Default)]
pub struct FinderBuilder {
    prefilter: Prefilter,
}

impl FinderBuilder {
    /// Create a new finder builder with default settings.
    pub fn new() -> FinderBuilder {
        FinderBuilder::default()
    }

    /// Build a forward finder using the given needle from the current
    /// settings.
    pub fn build_forward<'n, B: ?Sized + AsRef<[u8]>>(
        &self,
        needle: &'n B,
    ) -> Finder<'n> {
        self.build_forward_with_ranker(DefaultFrequencyRank, needle)
    }

    /// Build a forward finder using the given needle and a custom heuristic for
    /// determining the frequency of a given byte in the dataset.
    /// See [`HeuristicFrequencyRank`] for more details.
    pub fn build_forward_with_ranker<
        'n,
        R: HeuristicFrequencyRank,
        B: ?Sized + AsRef<[u8]>,
    >(
        &self,
        ranker: R,
        needle: &'n B,
    ) -> Finder<'n> {
        let needle = needle.as_ref();
        Finder {
            needle: CowBytes::new(needle),
            searcher: Searcher::new(self.prefilter, ranker, needle),
        }
    }

    /// Build a reverse finder using the given needle from the current
    /// settings.
    pub fn build_reverse<'n, B: ?Sized + AsRef<[u8]>>(
        &self,
        needle: &'n B,
    ) -> FinderRev<'n> {
        let needle = needle.as_ref();
        FinderRev {
            needle: CowBytes::new(needle),
            searcher: SearcherRev::new(needle),
        }
    }

    /// Configure the prefilter setting for the finder.
    ///
    /// See the documentation for [`Prefilter`] for more discussion on why
    /// you might want to configure this.
    pub fn prefilter(&mut self, prefilter: Prefilter) -> &mut FinderBuilder {
        self.prefilter = prefilter;
        self
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    define_substring_forward_quickcheck!(|h, n| Some(Finder::new(n).find(h)));
    define_substring_reverse_quickcheck!(|h, n| Some(
        FinderRev::new(n).rfind(h)
    ));

    #[test]
    fn forward() {
        crate::tests::substring::Runner::new()
            .fwd(|h, n| Some(Finder::new(n).find(h)))
            .run();
    }

    #[test]
    fn reverse() {
        crate::tests::substring::Runner::new()
            .rev(|h, n| Some(FinderRev::new(n).rfind(h)))
            .run();
    }
}