memchr/memmem/
searcher.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
use crate::arch::all::{
    packedpair::{HeuristicFrequencyRank, Pair},
    rabinkarp, twoway,
};

#[cfg(target_arch = "aarch64")]
use crate::arch::aarch64::neon::packedpair as neon;
#[cfg(all(target_arch = "wasm32", target_feature = "simd128"))]
use crate::arch::wasm32::simd128::packedpair as simd128;
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
use crate::arch::x86_64::{
    avx2::packedpair as avx2, sse2::packedpair as sse2,
};

/// A "meta" substring searcher.
///
/// To a first approximation, this chooses what it believes to be the "best"
/// substring search implemnetation based on the needle at construction time.
/// Then, every call to `find` will execute that particular implementation. To
/// a second approximation, multiple substring search algorithms may be used,
/// depending on the haystack. For example, for supremely short haystacks,
/// Rabin-Karp is typically used.
///
/// See the documentation on `Prefilter` for an explanation of the dispatching
/// mechanism. The quick summary is that an enum has too much overhead and
/// we can't use dynamic dispatch via traits because we need to work in a
/// core-only environment. (Dynamic dispatch works in core-only, but you
/// need `&dyn Trait` and we really need a `Box<dyn Trait>` here. The latter
/// requires `alloc`.) So instead, we use a union and an appropriately paired
/// free function to read from the correct field on the union and execute the
/// chosen substring search implementation.
#[derive(Clone)]
pub(crate) struct Searcher {
    call: SearcherKindFn,
    kind: SearcherKind,
    rabinkarp: rabinkarp::Finder,
}

impl Searcher {
    /// Creates a new "meta" substring searcher that attempts to choose the
    /// best algorithm based on the needle, heuristics and what the current
    /// target supports.
    #[inline]
    pub(crate) fn new<R: HeuristicFrequencyRank>(
        prefilter: PrefilterConfig,
        ranker: R,
        needle: &[u8],
    ) -> Searcher {
        let rabinkarp = rabinkarp::Finder::new(needle);
        if needle.len() <= 1 {
            return if needle.is_empty() {
                trace!("building empty substring searcher");
                Searcher {
                    call: searcher_kind_empty,
                    kind: SearcherKind { empty: () },
                    rabinkarp,
                }
            } else {
                trace!("building one-byte substring searcher");
                debug_assert_eq!(1, needle.len());
                Searcher {
                    call: searcher_kind_one_byte,
                    kind: SearcherKind { one_byte: needle[0] },
                    rabinkarp,
                }
            };
        }
        let pair = match Pair::with_ranker(needle, &ranker) {
            Some(pair) => pair,
            None => return Searcher::twoway(needle, rabinkarp, None),
        };
        debug_assert_ne!(
            pair.index1(),
            pair.index2(),
            "pair offsets should not be equivalent"
        );
        #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
        {
            if let Some(pp) = avx2::Finder::with_pair(needle, pair) {
                if do_packed_search(needle) {
                    trace!("building x86_64 AVX2 substring searcher");
                    let kind = SearcherKind { avx2: pp };
                    Searcher { call: searcher_kind_avx2, kind, rabinkarp }
                } else if prefilter.is_none() {
                    Searcher::twoway(needle, rabinkarp, None)
                } else {
                    let prestrat = Prefilter::avx2(pp, needle);
                    Searcher::twoway(needle, rabinkarp, Some(prestrat))
                }
            } else if let Some(pp) = sse2::Finder::with_pair(needle, pair) {
                if do_packed_search(needle) {
                    trace!("building x86_64 SSE2 substring searcher");
                    let kind = SearcherKind { sse2: pp };
                    Searcher { call: searcher_kind_sse2, kind, rabinkarp }
                } else if prefilter.is_none() {
                    Searcher::twoway(needle, rabinkarp, None)
                } else {
                    let prestrat = Prefilter::sse2(pp, needle);
                    Searcher::twoway(needle, rabinkarp, Some(prestrat))
                }
            } else if prefilter.is_none() {
                Searcher::twoway(needle, rabinkarp, None)
            } else {
                // We're pretty unlikely to get to this point, but it is
                // possible to be running on x86_64 without SSE2. Namely, it's
                // really up to the OS whether it wants to support vector
                // registers or not.
                let prestrat = Prefilter::fallback(ranker, pair, needle);
                Searcher::twoway(needle, rabinkarp, prestrat)
            }
        }
        #[cfg(all(target_arch = "wasm32", target_feature = "simd128"))]
        {
            if let Some(pp) = simd128::Finder::with_pair(needle, pair) {
                if do_packed_search(needle) {
                    trace!("building wasm32 simd128 substring searcher");
                    let kind = SearcherKind { simd128: pp };
                    Searcher { call: searcher_kind_simd128, kind, rabinkarp }
                } else if prefilter.is_none() {
                    Searcher::twoway(needle, rabinkarp, None)
                } else {
                    let prestrat = Prefilter::simd128(pp, needle);
                    Searcher::twoway(needle, rabinkarp, Some(prestrat))
                }
            } else if prefilter.is_none() {
                Searcher::twoway(needle, rabinkarp, None)
            } else {
                let prestrat = Prefilter::fallback(ranker, pair, needle);
                Searcher::twoway(needle, rabinkarp, prestrat)
            }
        }
        #[cfg(target_arch = "aarch64")]
        {
            if let Some(pp) = neon::Finder::with_pair(needle, pair) {
                if do_packed_search(needle) {
                    trace!("building aarch64 neon substring searcher");
                    let kind = SearcherKind { neon: pp };
                    Searcher { call: searcher_kind_neon, kind, rabinkarp }
                } else if prefilter.is_none() {
                    Searcher::twoway(needle, rabinkarp, None)
                } else {
                    let prestrat = Prefilter::neon(pp, needle);
                    Searcher::twoway(needle, rabinkarp, Some(prestrat))
                }
            } else if prefilter.is_none() {
                Searcher::twoway(needle, rabinkarp, None)
            } else {
                let prestrat = Prefilter::fallback(ranker, pair, needle);
                Searcher::twoway(needle, rabinkarp, prestrat)
            }
        }
        #[cfg(not(any(
            all(target_arch = "x86_64", target_feature = "sse2"),
            all(target_arch = "wasm32", target_feature = "simd128"),
            target_arch = "aarch64"
        )))]
        {
            if prefilter.is_none() {
                Searcher::twoway(needle, rabinkarp, None)
            } else {
                let prestrat = Prefilter::fallback(ranker, pair, needle);
                Searcher::twoway(needle, rabinkarp, prestrat)
            }
        }
    }

    /// Creates a new searcher that always uses the Two-Way algorithm. This is
    /// typically used when vector algorithms are unavailable or inappropriate.
    /// (For example, when the needle is "too long.")
    ///
    /// If a prefilter is given, then the searcher returned will be accelerated
    /// by the prefilter.
    #[inline]
    fn twoway(
        needle: &[u8],
        rabinkarp: rabinkarp::Finder,
        prestrat: Option<Prefilter>,
    ) -> Searcher {
        let finder = twoway::Finder::new(needle);
        match prestrat {
            None => {
                trace!("building scalar two-way substring searcher");
                let kind = SearcherKind { two_way: finder };
                Searcher { call: searcher_kind_two_way, kind, rabinkarp }
            }
            Some(prestrat) => {
                trace!(
                    "building scalar two-way \
                     substring searcher with a prefilter"
                );
                let two_way_with_prefilter =
                    TwoWayWithPrefilter { finder, prestrat };
                let kind = SearcherKind { two_way_with_prefilter };
                Searcher {
                    call: searcher_kind_two_way_with_prefilter,
                    kind,
                    rabinkarp,
                }
            }
        }
    }

    /// Searches the given haystack for the given needle. The needle given
    /// should be the same as the needle that this finder was initialized
    /// with.
    ///
    /// Inlining this can lead to big wins for latency, and #[inline] doesn't
    /// seem to be enough in some cases.
    #[inline(always)]
    pub(crate) fn find(
        &self,
        prestate: &mut PrefilterState,
        haystack: &[u8],
        needle: &[u8],
    ) -> Option<usize> {
        if haystack.len() < needle.len() {
            None
        } else {
            // SAFETY: By construction, we've ensured that the function
            // in `self.call` is properly paired with the union used in
            // `self.kind`.
            unsafe { (self.call)(self, prestate, haystack, needle) }
        }
    }
}

impl core::fmt::Debug for Searcher {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("Searcher")
            .field("call", &"<searcher function>")
            .field("kind", &"<searcher kind union>")
            .field("rabinkarp", &self.rabinkarp)
            .finish()
    }
}

/// A union indicating one of several possible substring search implementations
/// that are in active use.
///
/// This union should only be read by one of the functions prefixed with
/// `searcher_kind_`. Namely, the correct function is meant to be paired with
/// the union by the caller, such that the function always reads from the
/// designated union field.
#[derive(Clone, Copy)]
union SearcherKind {
    empty: (),
    one_byte: u8,
    two_way: twoway::Finder,
    two_way_with_prefilter: TwoWayWithPrefilter,
    #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
    sse2: crate::arch::x86_64::sse2::packedpair::Finder,
    #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
    avx2: crate::arch::x86_64::avx2::packedpair::Finder,
    #[cfg(all(target_arch = "wasm32", target_feature = "simd128"))]
    simd128: crate::arch::wasm32::simd128::packedpair::Finder,
    #[cfg(target_arch = "aarch64")]
    neon: crate::arch::aarch64::neon::packedpair::Finder,
}

/// A two-way substring searcher with a prefilter.
#[derive(Copy, Clone, Debug)]
struct TwoWayWithPrefilter {
    finder: twoway::Finder,
    prestrat: Prefilter,
}

/// The type of a substring search function.
///
/// # Safety
///
/// When using a function of this type, callers must ensure that the correct
/// function is paired with the value populated in `SearcherKind` union.
type SearcherKindFn = unsafe fn(
    searcher: &Searcher,
    prestate: &mut PrefilterState,
    haystack: &[u8],
    needle: &[u8],
) -> Option<usize>;

/// Reads from the `empty` field of `SearcherKind` to handle the case of
/// searching for the empty needle. Works on all platforms.
///
/// # Safety
///
/// Callers must ensure that the `searcher.kind.empty` union field is set.
unsafe fn searcher_kind_empty(
    _searcher: &Searcher,
    _prestate: &mut PrefilterState,
    _haystack: &[u8],
    _needle: &[u8],
) -> Option<usize> {
    Some(0)
}

/// Reads from the `one_byte` field of `SearcherKind` to handle the case of
/// searching for a single byte needle. Works on all platforms.
///
/// # Safety
///
/// Callers must ensure that the `searcher.kind.one_byte` union field is set.
unsafe fn searcher_kind_one_byte(
    searcher: &Searcher,
    _prestate: &mut PrefilterState,
    haystack: &[u8],
    _needle: &[u8],
) -> Option<usize> {
    let needle = searcher.kind.one_byte;
    crate::memchr(needle, haystack)
}

/// Reads from the `two_way` field of `SearcherKind` to handle the case of
/// searching for an arbitrary needle without prefilter acceleration. Works on
/// all platforms.
///
/// # Safety
///
/// Callers must ensure that the `searcher.kind.two_way` union field is set.
unsafe fn searcher_kind_two_way(
    searcher: &Searcher,
    _prestate: &mut PrefilterState,
    haystack: &[u8],
    needle: &[u8],
) -> Option<usize> {
    if rabinkarp::is_fast(haystack, needle) {
        searcher.rabinkarp.find(haystack, needle)
    } else {
        searcher.kind.two_way.find(haystack, needle)
    }
}

/// Reads from the `two_way_with_prefilter` field of `SearcherKind` to handle
/// the case of searching for an arbitrary needle with prefilter acceleration.
/// Works on all platforms.
///
/// # Safety
///
/// Callers must ensure that the `searcher.kind.two_way_with_prefilter` union
/// field is set.
unsafe fn searcher_kind_two_way_with_prefilter(
    searcher: &Searcher,
    prestate: &mut PrefilterState,
    haystack: &[u8],
    needle: &[u8],
) -> Option<usize> {
    if rabinkarp::is_fast(haystack, needle) {
        searcher.rabinkarp.find(haystack, needle)
    } else {
        let TwoWayWithPrefilter { ref finder, ref prestrat } =
            searcher.kind.two_way_with_prefilter;
        let pre = Pre { prestate, prestrat };
        finder.find_with_prefilter(Some(pre), haystack, needle)
    }
}

/// Reads from the `sse2` field of `SearcherKind` to execute the x86_64 SSE2
/// vectorized substring search implementation.
///
/// # Safety
///
/// Callers must ensure that the `searcher.kind.sse2` union field is set.
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
unsafe fn searcher_kind_sse2(
    searcher: &Searcher,
    _prestate: &mut PrefilterState,
    haystack: &[u8],
    needle: &[u8],
) -> Option<usize> {
    let finder = &searcher.kind.sse2;
    if haystack.len() < finder.min_haystack_len() {
        searcher.rabinkarp.find(haystack, needle)
    } else {
        finder.find(haystack, needle)
    }
}

/// Reads from the `avx2` field of `SearcherKind` to execute the x86_64 AVX2
/// vectorized substring search implementation.
///
/// # Safety
///
/// Callers must ensure that the `searcher.kind.avx2` union field is set.
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
unsafe fn searcher_kind_avx2(
    searcher: &Searcher,
    _prestate: &mut PrefilterState,
    haystack: &[u8],
    needle: &[u8],
) -> Option<usize> {
    let finder = &searcher.kind.avx2;
    if haystack.len() < finder.min_haystack_len() {
        searcher.rabinkarp.find(haystack, needle)
    } else {
        finder.find(haystack, needle)
    }
}

/// Reads from the `simd128` field of `SearcherKind` to execute the wasm32
/// simd128 vectorized substring search implementation.
///
/// # Safety
///
/// Callers must ensure that the `searcher.kind.simd128` union field is set.
#[cfg(all(target_arch = "wasm32", target_feature = "simd128"))]
unsafe fn searcher_kind_simd128(
    searcher: &Searcher,
    _prestate: &mut PrefilterState,
    haystack: &[u8],
    needle: &[u8],
) -> Option<usize> {
    let finder = &searcher.kind.simd128;
    if haystack.len() < finder.min_haystack_len() {
        searcher.rabinkarp.find(haystack, needle)
    } else {
        finder.find(haystack, needle)
    }
}

/// Reads from the `neon` field of `SearcherKind` to execute the aarch64 neon
/// vectorized substring search implementation.
///
/// # Safety
///
/// Callers must ensure that the `searcher.kind.neon` union field is set.
#[cfg(target_arch = "aarch64")]
unsafe fn searcher_kind_neon(
    searcher: &Searcher,
    _prestate: &mut PrefilterState,
    haystack: &[u8],
    needle: &[u8],
) -> Option<usize> {
    let finder = &searcher.kind.neon;
    if haystack.len() < finder.min_haystack_len() {
        searcher.rabinkarp.find(haystack, needle)
    } else {
        finder.find(haystack, needle)
    }
}

/// A reverse substring searcher.
#[derive(Clone, Debug)]
pub(crate) struct SearcherRev {
    kind: SearcherRevKind,
    rabinkarp: rabinkarp::FinderRev,
}

/// The kind of the reverse searcher.
///
/// For the reverse case, we don't do any SIMD acceleration or prefilters.
/// There is no specific technical reason why we don't, but rather don't do it
/// because it's not clear it's worth the extra code to do so. If you have a
/// use case for it, please file an issue.
///
/// We also don't do the union trick as we do with the forward case and
/// prefilters. Basically for the same reason we don't have prefilters or
/// vector algorithms for reverse searching: it's not clear it's worth doing.
/// Please file an issue if you have a compelling use case for fast reverse
/// substring search.
#[derive(Clone, Debug)]
enum SearcherRevKind {
    Empty,
    OneByte { needle: u8 },
    TwoWay { finder: twoway::FinderRev },
}

impl SearcherRev {
    /// Creates a new searcher for finding occurrences of the given needle in
    /// reverse. That is, it reports the last (instead of the first) occurrence
    /// of a needle in a haystack.
    #[inline]
    pub(crate) fn new(needle: &[u8]) -> SearcherRev {
        let kind = if needle.len() <= 1 {
            if needle.is_empty() {
                trace!("building empty reverse substring searcher");
                SearcherRevKind::Empty
            } else {
                trace!("building one-byte reverse substring searcher");
                debug_assert_eq!(1, needle.len());
                SearcherRevKind::OneByte { needle: needle[0] }
            }
        } else {
            trace!("building scalar two-way reverse substring searcher");
            let finder = twoway::FinderRev::new(needle);
            SearcherRevKind::TwoWay { finder }
        };
        let rabinkarp = rabinkarp::FinderRev::new(needle);
        SearcherRev { kind, rabinkarp }
    }

    /// Searches the given haystack for the last occurrence of the given
    /// needle. The needle given should be the same as the needle that this
    /// finder was initialized with.
    #[inline]
    pub(crate) fn rfind(
        &self,
        haystack: &[u8],
        needle: &[u8],
    ) -> Option<usize> {
        if haystack.len() < needle.len() {
            return None;
        }
        match self.kind {
            SearcherRevKind::Empty => Some(haystack.len()),
            SearcherRevKind::OneByte { needle } => {
                crate::memrchr(needle, haystack)
            }
            SearcherRevKind::TwoWay { ref finder } => {
                if rabinkarp::is_fast(haystack, needle) {
                    self.rabinkarp.rfind(haystack, needle)
                } else {
                    finder.rfind(haystack, needle)
                }
            }
        }
    }
}

/// Prefilter controls whether heuristics are used to accelerate searching.
///
/// A prefilter refers to the idea of detecting candidate matches very quickly,
/// and then confirming whether those candidates are full matches. This
/// idea can be quite effective since it's often the case that looking for
/// candidates can be a lot faster than running a complete substring search
/// over the entire input. Namely, looking for candidates can be done with
/// extremely fast vectorized code.
///
/// The downside of a prefilter is that it assumes false positives (which are
/// candidates generated by a prefilter that aren't matches) are somewhat rare
/// relative to the frequency of full matches. That is, if a lot of false
/// positives are generated, then it's possible for search time to be worse
/// than if the prefilter wasn't enabled in the first place.
///
/// Another downside of a prefilter is that it can result in highly variable
/// performance, where some cases are extraordinarily fast and others aren't.
/// Typically, variable performance isn't a problem, but it may be for your use
/// case.
///
/// The use of prefilters in this implementation does use a heuristic to detect
/// when a prefilter might not be carrying its weight, and will dynamically
/// disable its use. Nevertheless, this configuration option gives callers
/// the ability to disable prefilters if you have knowledge that they won't be
/// useful.
#[derive(Clone, Copy, Debug)]
#[non_exhaustive]
pub enum PrefilterConfig {
    /// Never used a prefilter in substring search.
    None,
    /// Automatically detect whether a heuristic prefilter should be used. If
    /// it is used, then heuristics will be used to dynamically disable the
    /// prefilter if it is believed to not be carrying its weight.
    Auto,
}

impl Default for PrefilterConfig {
    fn default() -> PrefilterConfig {
        PrefilterConfig::Auto
    }
}

impl PrefilterConfig {
    /// Returns true when this prefilter is set to the `None` variant.
    fn is_none(&self) -> bool {
        matches!(*self, PrefilterConfig::None)
    }
}

/// The implementation of a prefilter.
///
/// This type encapsulates dispatch to one of several possible choices for a
/// prefilter. Generally speaking, all prefilters have the same approximate
/// algorithm: they choose a couple of bytes from the needle that are believed
/// to be rare, use a fast vector algorithm to look for those bytes and return
/// positions as candidates for some substring search algorithm (currently only
/// Two-Way) to confirm as a match or not.
///
/// The differences between the algorithms are actually at the vector
/// implementation level. Namely, we need different routines based on both
/// which target architecture we're on and what CPU features are supported.
///
/// The straight-forwardly obvious approach here is to use an enum, and make
/// `Prefilter::find` do case analysis to determine which algorithm was
/// selected and invoke it. However, I've observed that this leads to poor
/// codegen in some cases, especially in latency sensitive benchmarks. That is,
/// this approach comes with overhead that I wasn't able to eliminate.
///
/// The second obvious approach is to use dynamic dispatch with traits. Doing
/// that in this context where `Prefilter` owns the selection generally
/// requires heap allocation, and this code is designed to run in core-only
/// environments.
///
/// So we settle on using a union (that's `PrefilterKind`) and a function
/// pointer (that's `PrefilterKindFn`). We select the right function pointer
/// based on which field in the union we set, and that function in turn
/// knows which field of the union to access. The downside of this approach
/// is that it forces us to think about safety, but the upside is that
/// there are some nice latency improvements to benchmarks. (Especially the
/// `memmem/sliceslice/short` benchmark.)
///
/// In cases where we've selected a vector algorithm and the haystack given
/// is too short, we fallback to the scalar version of `memchr` on the
/// `rarest_byte`. (The scalar version of `memchr` is still better than a naive
/// byte-at-a-time loop because it will read in `usize`-sized chunks at a
/// time.)
#[derive(Clone, Copy)]
struct Prefilter {
    call: PrefilterKindFn,
    kind: PrefilterKind,
    rarest_byte: u8,
    rarest_offset: u8,
}

impl Prefilter {
    /// Return a "fallback" prefilter, but only if it is believed to be
    /// effective.
    #[inline]
    fn fallback<R: HeuristicFrequencyRank>(
        ranker: R,
        pair: Pair,
        needle: &[u8],
    ) -> Option<Prefilter> {
        /// The maximum frequency rank permitted for the fallback prefilter.
        /// If the rarest byte in the needle has a frequency rank above this
        /// value, then no prefilter is used if the fallback prefilter would
        /// otherwise be selected.
        const MAX_FALLBACK_RANK: u8 = 250;

        trace!("building fallback prefilter");
        let rarest_offset = pair.index1();
        let rarest_byte = needle[usize::from(rarest_offset)];
        let rarest_rank = ranker.rank(rarest_byte);
        if rarest_rank > MAX_FALLBACK_RANK {
            None
        } else {
            let finder = crate::arch::all::packedpair::Finder::with_pair(
                needle,
                pair.clone(),
            )?;
            let call = prefilter_kind_fallback;
            let kind = PrefilterKind { fallback: finder };
            Some(Prefilter { call, kind, rarest_byte, rarest_offset })
        }
    }

    /// Return a prefilter using a x86_64 SSE2 vector algorithm.
    #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
    #[inline]
    fn sse2(finder: sse2::Finder, needle: &[u8]) -> Prefilter {
        trace!("building x86_64 SSE2 prefilter");
        let rarest_offset = finder.pair().index1();
        let rarest_byte = needle[usize::from(rarest_offset)];
        Prefilter {
            call: prefilter_kind_sse2,
            kind: PrefilterKind { sse2: finder },
            rarest_byte,
            rarest_offset,
        }
    }

    /// Return a prefilter using a x86_64 AVX2 vector algorithm.
    #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
    #[inline]
    fn avx2(finder: avx2::Finder, needle: &[u8]) -> Prefilter {
        trace!("building x86_64 AVX2 prefilter");
        let rarest_offset = finder.pair().index1();
        let rarest_byte = needle[usize::from(rarest_offset)];
        Prefilter {
            call: prefilter_kind_avx2,
            kind: PrefilterKind { avx2: finder },
            rarest_byte,
            rarest_offset,
        }
    }

    /// Return a prefilter using a wasm32 simd128 vector algorithm.
    #[cfg(all(target_arch = "wasm32", target_feature = "simd128"))]
    #[inline]
    fn simd128(finder: simd128::Finder, needle: &[u8]) -> Prefilter {
        trace!("building wasm32 simd128 prefilter");
        let rarest_offset = finder.pair().index1();
        let rarest_byte = needle[usize::from(rarest_offset)];
        Prefilter {
            call: prefilter_kind_simd128,
            kind: PrefilterKind { simd128: finder },
            rarest_byte,
            rarest_offset,
        }
    }

    /// Return a prefilter using a aarch64 neon vector algorithm.
    #[cfg(target_arch = "aarch64")]
    #[inline]
    fn neon(finder: neon::Finder, needle: &[u8]) -> Prefilter {
        trace!("building aarch64 neon prefilter");
        let rarest_offset = finder.pair().index1();
        let rarest_byte = needle[usize::from(rarest_offset)];
        Prefilter {
            call: prefilter_kind_neon,
            kind: PrefilterKind { neon: finder },
            rarest_byte,
            rarest_offset,
        }
    }

    /// Return a *candidate* position for a match.
    ///
    /// When this returns an offset, it implies that a match could begin at
    /// that offset, but it may not. That is, it is possible for a false
    /// positive to be returned.
    ///
    /// When `None` is returned, then it is guaranteed that there are no
    /// matches for the needle in the given haystack. That is, it is impossible
    /// for a false negative to be returned.
    ///
    /// The purpose of this routine is to look for candidate matching positions
    /// as quickly as possible before running a (likely) slower confirmation
    /// step.
    #[inline]
    fn find(&self, haystack: &[u8]) -> Option<usize> {
        // SAFETY: By construction, we've ensured that the function in
        // `self.call` is properly paired with the union used in `self.kind`.
        unsafe { (self.call)(self, haystack) }
    }

    /// A "simple" prefilter that just looks for the occurrence of the rarest
    /// byte from the needle. This is generally only used for very small
    /// haystacks.
    #[inline]
    fn find_simple(&self, haystack: &[u8]) -> Option<usize> {
        // We don't use crate::memchr here because the haystack should be small
        // enough that memchr won't be able to use vector routines anyway. So
        // we just skip straight to the fallback implementation which is likely
        // faster. (A byte-at-a-time loop is only used when the haystack is
        // smaller than `size_of::<usize>()`.)
        crate::arch::all::memchr::One::new(self.rarest_byte)
            .find(haystack)
            .map(|i| i.saturating_sub(usize::from(self.rarest_offset)))
    }
}

impl core::fmt::Debug for Prefilter {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("Prefilter")
            .field("call", &"<prefilter function>")
            .field("kind", &"<prefilter kind union>")
            .field("rarest_byte", &self.rarest_byte)
            .field("rarest_offset", &self.rarest_offset)
            .finish()
    }
}

/// A union indicating one of several possible prefilters that are in active
/// use.
///
/// This union should only be read by one of the functions prefixed with
/// `prefilter_kind_`. Namely, the correct function is meant to be paired with
/// the union by the caller, such that the function always reads from the
/// designated union field.
#[derive(Clone, Copy)]
union PrefilterKind {
    fallback: crate::arch::all::packedpair::Finder,
    #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
    sse2: crate::arch::x86_64::sse2::packedpair::Finder,
    #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
    avx2: crate::arch::x86_64::avx2::packedpair::Finder,
    #[cfg(all(target_arch = "wasm32", target_feature = "simd128"))]
    simd128: crate::arch::wasm32::simd128::packedpair::Finder,
    #[cfg(target_arch = "aarch64")]
    neon: crate::arch::aarch64::neon::packedpair::Finder,
}

/// The type of a prefilter function.
///
/// # Safety
///
/// When using a function of this type, callers must ensure that the correct
/// function is paired with the value populated in `PrefilterKind` union.
type PrefilterKindFn =
    unsafe fn(strat: &Prefilter, haystack: &[u8]) -> Option<usize>;

/// Reads from the `fallback` field of `PrefilterKind` to execute the fallback
/// prefilter. Works on all platforms.
///
/// # Safety
///
/// Callers must ensure that the `strat.kind.fallback` union field is set.
unsafe fn prefilter_kind_fallback(
    strat: &Prefilter,
    haystack: &[u8],
) -> Option<usize> {
    strat.kind.fallback.find_prefilter(haystack)
}

/// Reads from the `sse2` field of `PrefilterKind` to execute the x86_64 SSE2
/// prefilter.
///
/// # Safety
///
/// Callers must ensure that the `strat.kind.sse2` union field is set.
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
unsafe fn prefilter_kind_sse2(
    strat: &Prefilter,
    haystack: &[u8],
) -> Option<usize> {
    let finder = &strat.kind.sse2;
    if haystack.len() < finder.min_haystack_len() {
        strat.find_simple(haystack)
    } else {
        finder.find_prefilter(haystack)
    }
}

/// Reads from the `avx2` field of `PrefilterKind` to execute the x86_64 AVX2
/// prefilter.
///
/// # Safety
///
/// Callers must ensure that the `strat.kind.avx2` union field is set.
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
unsafe fn prefilter_kind_avx2(
    strat: &Prefilter,
    haystack: &[u8],
) -> Option<usize> {
    let finder = &strat.kind.avx2;
    if haystack.len() < finder.min_haystack_len() {
        strat.find_simple(haystack)
    } else {
        finder.find_prefilter(haystack)
    }
}

/// Reads from the `simd128` field of `PrefilterKind` to execute the wasm32
/// simd128 prefilter.
///
/// # Safety
///
/// Callers must ensure that the `strat.kind.simd128` union field is set.
#[cfg(all(target_arch = "wasm32", target_feature = "simd128"))]
unsafe fn prefilter_kind_simd128(
    strat: &Prefilter,
    haystack: &[u8],
) -> Option<usize> {
    let finder = &strat.kind.simd128;
    if haystack.len() < finder.min_haystack_len() {
        strat.find_simple(haystack)
    } else {
        finder.find_prefilter(haystack)
    }
}

/// Reads from the `neon` field of `PrefilterKind` to execute the aarch64 neon
/// prefilter.
///
/// # Safety
///
/// Callers must ensure that the `strat.kind.neon` union field is set.
#[cfg(target_arch = "aarch64")]
unsafe fn prefilter_kind_neon(
    strat: &Prefilter,
    haystack: &[u8],
) -> Option<usize> {
    let finder = &strat.kind.neon;
    if haystack.len() < finder.min_haystack_len() {
        strat.find_simple(haystack)
    } else {
        finder.find_prefilter(haystack)
    }
}

/// PrefilterState tracks state associated with the effectiveness of a
/// prefilter. It is used to track how many bytes, on average, are skipped by
/// the prefilter. If this average dips below a certain threshold over time,
/// then the state renders the prefilter inert and stops using it.
///
/// A prefilter state should be created for each search. (Where creating an
/// iterator is treated as a single search.) A prefilter state should only be
/// created from a `Freqy`. e.g., An inert `Freqy` will produce an inert
/// `PrefilterState`.
#[derive(Clone, Copy, Debug)]
pub(crate) struct PrefilterState {
    /// The number of skips that has been executed. This is always 1 greater
    /// than the actual number of skips. The special sentinel value of 0
    /// indicates that the prefilter is inert. This is useful to avoid
    /// additional checks to determine whether the prefilter is still
    /// "effective." Once a prefilter becomes inert, it should no longer be
    /// used (according to our heuristics).
    skips: u32,
    /// The total number of bytes that have been skipped.
    skipped: u32,
}

impl PrefilterState {
    /// The minimum number of skip attempts to try before considering whether
    /// a prefilter is effective or not.
    const MIN_SKIPS: u32 = 50;

    /// The minimum amount of bytes that skipping must average.
    ///
    /// This value was chosen based on varying it and checking
    /// the microbenchmarks. In particular, this can impact the
    /// pathological/repeated-{huge,small} benchmarks quite a bit if it's set
    /// too low.
    const MIN_SKIP_BYTES: u32 = 8;

    /// Create a fresh prefilter state.
    #[inline]
    pub(crate) fn new() -> PrefilterState {
        PrefilterState { skips: 1, skipped: 0 }
    }

    /// Update this state with the number of bytes skipped on the last
    /// invocation of the prefilter.
    #[inline]
    fn update(&mut self, skipped: usize) {
        self.skips = self.skips.saturating_add(1);
        // We need to do this dance since it's technically possible for
        // `skipped` to overflow a `u32`. (And we use a `u32` to reduce the
        // size of a prefilter state.)
        self.skipped = match u32::try_from(skipped) {
            Err(_) => core::u32::MAX,
            Ok(skipped) => self.skipped.saturating_add(skipped),
        };
    }

    /// Return true if and only if this state indicates that a prefilter is
    /// still effective.
    #[inline]
    fn is_effective(&mut self) -> bool {
        if self.is_inert() {
            return false;
        }
        if self.skips() < PrefilterState::MIN_SKIPS {
            return true;
        }
        if self.skipped >= PrefilterState::MIN_SKIP_BYTES * self.skips() {
            return true;
        }

        // We're inert.
        self.skips = 0;
        false
    }

    /// Returns true if the prefilter this state represents should no longer
    /// be used.
    #[inline]
    fn is_inert(&self) -> bool {
        self.skips == 0
    }

    /// Returns the total number of times the prefilter has been used.
    #[inline]
    fn skips(&self) -> u32 {
        // Remember, `0` is a sentinel value indicating inertness, so we
        // always need to subtract `1` to get our actual number of skips.
        self.skips.saturating_sub(1)
    }
}

/// A combination of prefilter effectiveness state and the prefilter itself.
#[derive(Debug)]
pub(crate) struct Pre<'a> {
    /// State that tracks the effectiveness of a prefilter.
    prestate: &'a mut PrefilterState,
    /// The actual prefilter.
    prestrat: &'a Prefilter,
}

impl<'a> Pre<'a> {
    /// Call this prefilter on the given haystack with the given needle.
    #[inline]
    pub(crate) fn find(&mut self, haystack: &[u8]) -> Option<usize> {
        let result = self.prestrat.find(haystack);
        self.prestate.update(result.unwrap_or(haystack.len()));
        result
    }

    /// Return true if and only if this prefilter should be used.
    #[inline]
    pub(crate) fn is_effective(&mut self) -> bool {
        self.prestate.is_effective()
    }
}

/// Returns true if the needle has the right characteristics for a vector
/// algorithm to handle the entirety of substring search.
///
/// Vector algorithms can be used for prefilters for other substring search
/// algorithms (like Two-Way), but they can also be used for substring search
/// on their own. When used for substring search, vector algorithms will
/// quickly identify candidate match positions (just like in the prefilter
/// case), but instead of returning the candidate position they will try to
/// confirm the match themselves. Confirmation happens via `memcmp`. This
/// works well for short needles, but can break down when many false candidate
/// positions are generated for large needles. Thus, we only permit vector
/// algorithms to own substring search when the needle is of a certain length.
#[inline]
fn do_packed_search(needle: &[u8]) -> bool {
    /// The minimum length of a needle required for this algorithm. The minimum
    /// is 2 since a length of 1 should just use memchr and a length of 0 isn't
    /// a case handled by this searcher.
    const MIN_LEN: usize = 2;

    /// The maximum length of a needle required for this algorithm.
    ///
    /// In reality, there is no hard max here. The code below can handle any
    /// length needle. (Perhaps that suggests there are missing optimizations.)
    /// Instead, this is a heuristic and a bound guaranteeing our linear time
    /// complexity.
    ///
    /// It is a heuristic because when a candidate match is found, memcmp is
    /// run. For very large needles with lots of false positives, memcmp can
    /// make the code run quite slow.
    ///
    /// It is a bound because the worst case behavior with memcmp is
    /// multiplicative in the size of the needle and haystack, and we want
    /// to keep that additive. This bound ensures we still meet that bound
    /// theoretically, since it's just a constant. We aren't acting in bad
    /// faith here, memcmp on tiny needles is so fast that even in pathological
    /// cases (see pathological vector benchmarks), this is still just as fast
    /// or faster in practice.
    ///
    /// This specific number was chosen by tweaking a bit and running
    /// benchmarks. The rare-medium-needle, for example, gets about 5% faster
    /// by using this algorithm instead of a prefilter-accelerated Two-Way.
    /// There's also a theoretical desire to keep this number reasonably
    /// low, to mitigate the impact of pathological cases. I did try 64, and
    /// some benchmarks got a little better, and others (particularly the
    /// pathological ones), got a lot worse. So... 32 it is?
    const MAX_LEN: usize = 32;
    MIN_LEN <= needle.len() && needle.len() <= MAX_LEN
}