aho_corasick/packed/
api.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
use alloc::sync::Arc;

use crate::{
    packed::{pattern::Patterns, rabinkarp::RabinKarp, teddy},
    util::search::{Match, Span},
};

/// This is a limit placed on the total number of patterns we're willing to try
/// and match at once. As more sophisticated algorithms are added, this number
/// may be increased.
const PATTERN_LIMIT: usize = 128;

/// A knob for controlling the match semantics of a packed multiple string
/// searcher.
///
/// This differs from the [`MatchKind`](crate::MatchKind) type in the top-level
/// crate module in that it doesn't support "standard" match semantics,
/// and instead only supports leftmost-first or leftmost-longest. Namely,
/// "standard" semantics cannot be easily supported by packed searchers.
///
/// For more information on the distinction between leftmost-first and
/// leftmost-longest, see the docs on the top-level `MatchKind` type.
///
/// Unlike the top-level `MatchKind` type, the default match semantics for this
/// type are leftmost-first.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[non_exhaustive]
pub enum MatchKind {
    /// Use leftmost-first match semantics, which reports leftmost matches.
    /// When there are multiple possible leftmost matches, the match
    /// corresponding to the pattern that appeared earlier when constructing
    /// the automaton is reported.
    ///
    /// This is the default.
    LeftmostFirst,
    /// Use leftmost-longest match semantics, which reports leftmost matches.
    /// When there are multiple possible leftmost matches, the longest match
    /// is chosen.
    LeftmostLongest,
}

impl Default for MatchKind {
    fn default() -> MatchKind {
        MatchKind::LeftmostFirst
    }
}

/// The configuration for a packed multiple pattern searcher.
///
/// The configuration is currently limited only to being able to select the
/// match semantics (leftmost-first or leftmost-longest) of a searcher. In the
/// future, more knobs may be made available.
///
/// A configuration produces a [`packed::Builder`](Builder), which in turn can
/// be used to construct a [`packed::Searcher`](Searcher) for searching.
///
/// # Example
///
/// This example shows how to use leftmost-longest semantics instead of the
/// default (leftmost-first).
///
/// ```
/// use aho_corasick::{packed::{Config, MatchKind}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Config::new()
///     .match_kind(MatchKind::LeftmostLongest)
///     .builder()
///     .add("foo")
///     .add("foobar")
///     .build()?;
/// let matches: Vec<PatternID> = searcher
///     .find_iter("foobar")
///     .map(|mat| mat.pattern())
///     .collect();
/// assert_eq!(vec![PatternID::must(1)], matches);
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// #     target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// #     example().unwrap()
/// # } else {
/// #     assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Config {
    kind: MatchKind,
    force: Option<ForceAlgorithm>,
    only_teddy_fat: Option<bool>,
    only_teddy_256bit: Option<bool>,
    heuristic_pattern_limits: bool,
}

/// An internal option for forcing the use of a particular packed algorithm.
///
/// When an algorithm is forced, if a searcher could not be constructed for it,
/// then no searcher will be returned even if an alternative algorithm would
/// work.
#[derive(Clone, Debug)]
enum ForceAlgorithm {
    Teddy,
    RabinKarp,
}

impl Default for Config {
    fn default() -> Config {
        Config::new()
    }
}

impl Config {
    /// Create a new default configuration. A default configuration uses
    /// leftmost-first match semantics.
    pub fn new() -> Config {
        Config {
            kind: MatchKind::LeftmostFirst,
            force: None,
            only_teddy_fat: None,
            only_teddy_256bit: None,
            heuristic_pattern_limits: true,
        }
    }

    /// Create a packed builder from this configuration. The builder can be
    /// used to accumulate patterns and create a [`Searcher`] from them.
    pub fn builder(&self) -> Builder {
        Builder::from_config(self.clone())
    }

    /// Set the match semantics for this configuration.
    pub fn match_kind(&mut self, kind: MatchKind) -> &mut Config {
        self.kind = kind;
        self
    }

    /// An undocumented method for forcing the use of the Teddy algorithm.
    ///
    /// This is only exposed for more precise testing and benchmarks. Callers
    /// should not use it as it is not part of the API stability guarantees of
    /// this crate.
    #[doc(hidden)]
    pub fn only_teddy(&mut self, yes: bool) -> &mut Config {
        if yes {
            self.force = Some(ForceAlgorithm::Teddy);
        } else {
            self.force = None;
        }
        self
    }

    /// An undocumented method for forcing the use of the Fat Teddy algorithm.
    ///
    /// This is only exposed for more precise testing and benchmarks. Callers
    /// should not use it as it is not part of the API stability guarantees of
    /// this crate.
    #[doc(hidden)]
    pub fn only_teddy_fat(&mut self, yes: Option<bool>) -> &mut Config {
        self.only_teddy_fat = yes;
        self
    }

    /// An undocumented method for forcing the use of SSE (`Some(false)`) or
    /// AVX (`Some(true)`) algorithms.
    ///
    /// This is only exposed for more precise testing and benchmarks. Callers
    /// should not use it as it is not part of the API stability guarantees of
    /// this crate.
    #[doc(hidden)]
    pub fn only_teddy_256bit(&mut self, yes: Option<bool>) -> &mut Config {
        self.only_teddy_256bit = yes;
        self
    }

    /// An undocumented method for forcing the use of the Rabin-Karp algorithm.
    ///
    /// This is only exposed for more precise testing and benchmarks. Callers
    /// should not use it as it is not part of the API stability guarantees of
    /// this crate.
    #[doc(hidden)]
    pub fn only_rabin_karp(&mut self, yes: bool) -> &mut Config {
        if yes {
            self.force = Some(ForceAlgorithm::RabinKarp);
        } else {
            self.force = None;
        }
        self
    }

    /// Request that heuristic limitations on the number of patterns be
    /// employed. This useful to disable for benchmarking where one wants to
    /// explore how Teddy performs on large number of patterns even if the
    /// heuristics would otherwise refuse construction.
    ///
    /// This is enabled by default.
    pub fn heuristic_pattern_limits(&mut self, yes: bool) -> &mut Config {
        self.heuristic_pattern_limits = yes;
        self
    }
}

/// A builder for constructing a packed searcher from a collection of patterns.
///
/// # Example
///
/// This example shows how to use a builder to construct a searcher. By
/// default, leftmost-first match semantics are used.
///
/// ```
/// use aho_corasick::{packed::{Builder, MatchKind}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Builder::new()
///     .add("foobar")
///     .add("foo")
///     .build()?;
/// let matches: Vec<PatternID> = searcher
///     .find_iter("foobar")
///     .map(|mat| mat.pattern())
///     .collect();
/// assert_eq!(vec![PatternID::ZERO], matches);
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// #     target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// #     example().unwrap()
/// # } else {
/// #     assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
    /// The configuration of this builder and subsequent matcher.
    config: Config,
    /// Set to true if the builder detects that a matcher cannot be built.
    inert: bool,
    /// The patterns provided by the caller.
    patterns: Patterns,
}

impl Builder {
    /// Create a new builder for constructing a multi-pattern searcher. This
    /// constructor uses the default configuration.
    pub fn new() -> Builder {
        Builder::from_config(Config::new())
    }

    fn from_config(config: Config) -> Builder {
        Builder { config, inert: false, patterns: Patterns::new() }
    }

    /// Build a searcher from the patterns added to this builder so far.
    pub fn build(&self) -> Option<Searcher> {
        if self.inert || self.patterns.is_empty() {
            return None;
        }
        let mut patterns = self.patterns.clone();
        patterns.set_match_kind(self.config.kind);
        let patterns = Arc::new(patterns);
        let rabinkarp = RabinKarp::new(&patterns);
        // Effectively, we only want to return a searcher if we can use Teddy,
        // since Teddy is our only fast packed searcher at the moment.
        // Rabin-Karp is only used when searching haystacks smaller than what
        // Teddy can support. Thus, the only way to get a Rabin-Karp searcher
        // is to force it using undocumented APIs (for tests/benchmarks).
        let (search_kind, minimum_len) = match self.config.force {
            None | Some(ForceAlgorithm::Teddy) => {
                debug!("trying to build Teddy packed matcher");
                let teddy = match self.build_teddy(Arc::clone(&patterns)) {
                    None => return None,
                    Some(teddy) => teddy,
                };
                let minimum_len = teddy.minimum_len();
                (SearchKind::Teddy(teddy), minimum_len)
            }
            Some(ForceAlgorithm::RabinKarp) => {
                debug!("using Rabin-Karp packed matcher");
                (SearchKind::RabinKarp, 0)
            }
        };
        Some(Searcher { patterns, rabinkarp, search_kind, minimum_len })
    }

    fn build_teddy(&self, patterns: Arc<Patterns>) -> Option<teddy::Searcher> {
        teddy::Builder::new()
            .only_256bit(self.config.only_teddy_256bit)
            .only_fat(self.config.only_teddy_fat)
            .heuristic_pattern_limits(self.config.heuristic_pattern_limits)
            .build(patterns)
    }

    /// Add the given pattern to this set to match.
    ///
    /// The order in which patterns are added is significant. Namely, when
    /// using leftmost-first match semantics, then when multiple patterns can
    /// match at a particular location, the pattern that was added first is
    /// used as the match.
    ///
    /// If the number of patterns added exceeds the amount supported by packed
    /// searchers, then the builder will stop accumulating patterns and render
    /// itself inert. At this point, constructing a searcher will always return
    /// `None`.
    pub fn add<P: AsRef<[u8]>>(&mut self, pattern: P) -> &mut Builder {
        if self.inert {
            return self;
        } else if self.patterns.len() >= PATTERN_LIMIT {
            self.inert = true;
            self.patterns.reset();
            return self;
        }
        // Just in case PATTERN_LIMIT increases beyond u16::MAX.
        assert!(self.patterns.len() <= core::u16::MAX as usize);

        let pattern = pattern.as_ref();
        if pattern.is_empty() {
            self.inert = true;
            self.patterns.reset();
            return self;
        }
        self.patterns.add(pattern);
        self
    }

    /// Add the given iterator of patterns to this set to match.
    ///
    /// The iterator must yield elements that can be converted into a `&[u8]`.
    ///
    /// The order in which patterns are added is significant. Namely, when
    /// using leftmost-first match semantics, then when multiple patterns can
    /// match at a particular location, the pattern that was added first is
    /// used as the match.
    ///
    /// If the number of patterns added exceeds the amount supported by packed
    /// searchers, then the builder will stop accumulating patterns and render
    /// itself inert. At this point, constructing a searcher will always return
    /// `None`.
    pub fn extend<I, P>(&mut self, patterns: I) -> &mut Builder
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        for p in patterns {
            self.add(p);
        }
        self
    }

    /// Returns the number of patterns added to this builder.
    pub fn len(&self) -> usize {
        self.patterns.len()
    }

    /// Returns the length, in bytes, of the shortest pattern added.
    pub fn minimum_len(&self) -> usize {
        self.patterns.minimum_len()
    }
}

impl Default for Builder {
    fn default() -> Builder {
        Builder::new()
    }
}

/// A packed searcher for quickly finding occurrences of multiple patterns.
///
/// If callers need more flexible construction, or if one wants to change the
/// match semantics (either leftmost-first or leftmost-longest), then one can
/// use the [`Config`] and/or [`Builder`] types for more fine grained control.
///
/// # Example
///
/// This example shows how to create a searcher from an iterator of patterns.
/// By default, leftmost-first match semantics are used.
///
/// ```
/// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
/// let matches: Vec<PatternID> = searcher
///     .find_iter("foobar")
///     .map(|mat| mat.pattern())
///     .collect();
/// assert_eq!(vec![PatternID::ZERO], matches);
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// #     target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// #     example().unwrap()
/// # } else {
/// #     assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Searcher {
    patterns: Arc<Patterns>,
    rabinkarp: RabinKarp,
    search_kind: SearchKind,
    minimum_len: usize,
}

#[derive(Clone, Debug)]
enum SearchKind {
    Teddy(teddy::Searcher),
    RabinKarp,
}

impl Searcher {
    /// A convenience function for constructing a searcher from an iterator
    /// of things that can be converted to a `&[u8]`.
    ///
    /// If a searcher could not be constructed (either because of an
    /// unsupported CPU or because there are too many patterns), then `None`
    /// is returned.
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// let matches: Vec<PatternID> = searcher
    ///     .find_iter("foobar")
    ///     .map(|mat| mat.pattern())
    ///     .collect();
    /// assert_eq!(vec![PatternID::ZERO], matches);
    /// # Some(()) }
    /// # if cfg!(all(feature = "std", any(
    /// #     target_arch = "x86_64", target_arch = "aarch64",
    /// # ))) {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    pub fn new<I, P>(patterns: I) -> Option<Searcher>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        Builder::new().extend(patterns).build()
    }

    /// A convenience function for calling `Config::new()`.
    ///
    /// This is useful for avoiding an additional import.
    pub fn config() -> Config {
        Config::new()
    }

    /// A convenience function for calling `Builder::new()`.
    ///
    /// This is useful for avoiding an additional import.
    pub fn builder() -> Builder {
        Builder::new()
    }

    /// Return the first occurrence of any of the patterns in this searcher,
    /// according to its match semantics, in the given haystack. The `Match`
    /// returned will include the identifier of the pattern that matched, which
    /// corresponds to the index of the pattern (starting from `0`) in which it
    /// was added.
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// let mat = searcher.find("foobar")?;
    /// assert_eq!(PatternID::ZERO, mat.pattern());
    /// assert_eq!(0, mat.start());
    /// assert_eq!(6, mat.end());
    /// # Some(()) }
    /// # if cfg!(all(feature = "std", any(
    /// #     target_arch = "x86_64", target_arch = "aarch64",
    /// # ))) {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    #[inline]
    pub fn find<B: AsRef<[u8]>>(&self, haystack: B) -> Option<Match> {
        let haystack = haystack.as_ref();
        self.find_in(haystack, Span::from(0..haystack.len()))
    }

    /// Return the first occurrence of any of the patterns in this searcher,
    /// according to its match semantics, in the given haystack starting from
    /// the given position.
    ///
    /// The `Match` returned will include the identifier of the pattern that
    /// matched, which corresponds to the index of the pattern (starting from
    /// `0`) in which it was added. The offsets in the `Match` will be relative
    /// to the start of `haystack` (and not `at`).
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID, Span};
    ///
    /// # fn example() -> Option<()> {
    /// let haystack = "foofoobar";
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// let mat = searcher.find_in(haystack, Span::from(3..haystack.len()))?;
    /// assert_eq!(PatternID::ZERO, mat.pattern());
    /// assert_eq!(3, mat.start());
    /// assert_eq!(9, mat.end());
    /// # Some(()) }
    /// # if cfg!(all(feature = "std", any(
    /// #     target_arch = "x86_64", target_arch = "aarch64",
    /// # ))) {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    #[inline]
    pub fn find_in<B: AsRef<[u8]>>(
        &self,
        haystack: B,
        span: Span,
    ) -> Option<Match> {
        let haystack = haystack.as_ref();
        match self.search_kind {
            SearchKind::Teddy(ref teddy) => {
                if haystack[span].len() < teddy.minimum_len() {
                    return self.find_in_slow(haystack, span);
                }
                teddy.find(&haystack[..span.end], span.start)
            }
            SearchKind::RabinKarp => {
                self.rabinkarp.find_at(&haystack[..span.end], span.start)
            }
        }
    }

    /// Return an iterator of non-overlapping occurrences of the patterns in
    /// this searcher, according to its match semantics, in the given haystack.
    ///
    /// # Example
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// let matches: Vec<PatternID> = searcher
    ///     .find_iter("foobar fooba foofoo")
    ///     .map(|mat| mat.pattern())
    ///     .collect();
    /// assert_eq!(vec![
    ///     PatternID::must(0),
    ///     PatternID::must(1),
    ///     PatternID::must(1),
    ///     PatternID::must(1),
    /// ], matches);
    /// # Some(()) }
    /// # if cfg!(all(feature = "std", any(
    /// #     target_arch = "x86_64", target_arch = "aarch64",
    /// # ))) {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    #[inline]
    pub fn find_iter<'a, 'b, B: ?Sized + AsRef<[u8]>>(
        &'a self,
        haystack: &'b B,
    ) -> FindIter<'a, 'b> {
        let haystack = haystack.as_ref();
        let span = Span::from(0..haystack.len());
        FindIter { searcher: self, haystack, span }
    }

    /// Returns the match kind used by this packed searcher.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use aho_corasick::packed::{MatchKind, Searcher};
    ///
    /// # fn example() -> Option<()> {
    /// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
    /// // leftmost-first is the default.
    /// assert_eq!(&MatchKind::LeftmostFirst, searcher.match_kind());
    /// # Some(()) }
    /// # if cfg!(all(feature = "std", any(
    /// #     target_arch = "x86_64", target_arch = "aarch64",
    /// # ))) {
    /// #     example().unwrap()
    /// # } else {
    /// #     assert!(example().is_none());
    /// # }
    /// ```
    #[inline]
    pub fn match_kind(&self) -> &MatchKind {
        self.patterns.match_kind()
    }

    /// Returns the minimum length of a haystack that is required in order for
    /// packed searching to be effective.
    ///
    /// In some cases, the underlying packed searcher may not be able to search
    /// very short haystacks. When that occurs, the implementation will defer
    /// to a slower non-packed searcher (which is still generally faster than
    /// Aho-Corasick for a small number of patterns). However, callers may
    /// want to avoid ever using the slower variant, which one can do by
    /// never passing a haystack shorter than the minimum length returned by
    /// this method.
    #[inline]
    pub fn minimum_len(&self) -> usize {
        self.minimum_len
    }

    /// Returns the approximate total amount of heap used by this searcher, in
    /// units of bytes.
    #[inline]
    pub fn memory_usage(&self) -> usize {
        self.patterns.memory_usage()
            + self.rabinkarp.memory_usage()
            + self.search_kind.memory_usage()
    }

    /// Use a slow (non-packed) searcher.
    ///
    /// This is useful when a packed searcher could be constructed, but could
    /// not be used to search a specific haystack. For example, if Teddy was
    /// built but the haystack is smaller than ~34 bytes, then Teddy might not
    /// be able to run.
    fn find_in_slow(&self, haystack: &[u8], span: Span) -> Option<Match> {
        self.rabinkarp.find_at(&haystack[..span.end], span.start)
    }
}

impl SearchKind {
    fn memory_usage(&self) -> usize {
        match *self {
            SearchKind::Teddy(ref ted) => ted.memory_usage(),
            SearchKind::RabinKarp => 0,
        }
    }
}

/// An iterator over non-overlapping matches from a packed searcher.
///
/// The lifetime `'s` refers to the lifetime of the underlying [`Searcher`],
/// while the lifetime `'h` refers to the lifetime of the haystack being
/// searched.
#[derive(Debug)]
pub struct FindIter<'s, 'h> {
    searcher: &'s Searcher,
    haystack: &'h [u8],
    span: Span,
}

impl<'s, 'h> Iterator for FindIter<'s, 'h> {
    type Item = Match;

    fn next(&mut self) -> Option<Match> {
        if self.span.start > self.span.end {
            return None;
        }
        match self.searcher.find_in(&self.haystack, self.span) {
            None => None,
            Some(m) => {
                self.span.start = m.end();
                Some(m)
            }
        }
    }
}