aho_corasick/packed/api.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
use alloc::sync::Arc;
use crate::{
packed::{pattern::Patterns, rabinkarp::RabinKarp, teddy},
util::search::{Match, Span},
};
/// This is a limit placed on the total number of patterns we're willing to try
/// and match at once. As more sophisticated algorithms are added, this number
/// may be increased.
const PATTERN_LIMIT: usize = 128;
/// A knob for controlling the match semantics of a packed multiple string
/// searcher.
///
/// This differs from the [`MatchKind`](crate::MatchKind) type in the top-level
/// crate module in that it doesn't support "standard" match semantics,
/// and instead only supports leftmost-first or leftmost-longest. Namely,
/// "standard" semantics cannot be easily supported by packed searchers.
///
/// For more information on the distinction between leftmost-first and
/// leftmost-longest, see the docs on the top-level `MatchKind` type.
///
/// Unlike the top-level `MatchKind` type, the default match semantics for this
/// type are leftmost-first.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[non_exhaustive]
pub enum MatchKind {
/// Use leftmost-first match semantics, which reports leftmost matches.
/// When there are multiple possible leftmost matches, the match
/// corresponding to the pattern that appeared earlier when constructing
/// the automaton is reported.
///
/// This is the default.
LeftmostFirst,
/// Use leftmost-longest match semantics, which reports leftmost matches.
/// When there are multiple possible leftmost matches, the longest match
/// is chosen.
LeftmostLongest,
}
impl Default for MatchKind {
fn default() -> MatchKind {
MatchKind::LeftmostFirst
}
}
/// The configuration for a packed multiple pattern searcher.
///
/// The configuration is currently limited only to being able to select the
/// match semantics (leftmost-first or leftmost-longest) of a searcher. In the
/// future, more knobs may be made available.
///
/// A configuration produces a [`packed::Builder`](Builder), which in turn can
/// be used to construct a [`packed::Searcher`](Searcher) for searching.
///
/// # Example
///
/// This example shows how to use leftmost-longest semantics instead of the
/// default (leftmost-first).
///
/// ```
/// use aho_corasick::{packed::{Config, MatchKind}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Config::new()
/// .match_kind(MatchKind::LeftmostLongest)
/// .builder()
/// .add("foo")
/// .add("foobar")
/// .build()?;
/// let matches: Vec<PatternID> = searcher
/// .find_iter("foobar")
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![PatternID::must(1)], matches);
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// # target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// # example().unwrap()
/// # } else {
/// # assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Config {
kind: MatchKind,
force: Option<ForceAlgorithm>,
only_teddy_fat: Option<bool>,
only_teddy_256bit: Option<bool>,
heuristic_pattern_limits: bool,
}
/// An internal option for forcing the use of a particular packed algorithm.
///
/// When an algorithm is forced, if a searcher could not be constructed for it,
/// then no searcher will be returned even if an alternative algorithm would
/// work.
#[derive(Clone, Debug)]
enum ForceAlgorithm {
Teddy,
RabinKarp,
}
impl Default for Config {
fn default() -> Config {
Config::new()
}
}
impl Config {
/// Create a new default configuration. A default configuration uses
/// leftmost-first match semantics.
pub fn new() -> Config {
Config {
kind: MatchKind::LeftmostFirst,
force: None,
only_teddy_fat: None,
only_teddy_256bit: None,
heuristic_pattern_limits: true,
}
}
/// Create a packed builder from this configuration. The builder can be
/// used to accumulate patterns and create a [`Searcher`] from them.
pub fn builder(&self) -> Builder {
Builder::from_config(self.clone())
}
/// Set the match semantics for this configuration.
pub fn match_kind(&mut self, kind: MatchKind) -> &mut Config {
self.kind = kind;
self
}
/// An undocumented method for forcing the use of the Teddy algorithm.
///
/// This is only exposed for more precise testing and benchmarks. Callers
/// should not use it as it is not part of the API stability guarantees of
/// this crate.
#[doc(hidden)]
pub fn only_teddy(&mut self, yes: bool) -> &mut Config {
if yes {
self.force = Some(ForceAlgorithm::Teddy);
} else {
self.force = None;
}
self
}
/// An undocumented method for forcing the use of the Fat Teddy algorithm.
///
/// This is only exposed for more precise testing and benchmarks. Callers
/// should not use it as it is not part of the API stability guarantees of
/// this crate.
#[doc(hidden)]
pub fn only_teddy_fat(&mut self, yes: Option<bool>) -> &mut Config {
self.only_teddy_fat = yes;
self
}
/// An undocumented method for forcing the use of SSE (`Some(false)`) or
/// AVX (`Some(true)`) algorithms.
///
/// This is only exposed for more precise testing and benchmarks. Callers
/// should not use it as it is not part of the API stability guarantees of
/// this crate.
#[doc(hidden)]
pub fn only_teddy_256bit(&mut self, yes: Option<bool>) -> &mut Config {
self.only_teddy_256bit = yes;
self
}
/// An undocumented method for forcing the use of the Rabin-Karp algorithm.
///
/// This is only exposed for more precise testing and benchmarks. Callers
/// should not use it as it is not part of the API stability guarantees of
/// this crate.
#[doc(hidden)]
pub fn only_rabin_karp(&mut self, yes: bool) -> &mut Config {
if yes {
self.force = Some(ForceAlgorithm::RabinKarp);
} else {
self.force = None;
}
self
}
/// Request that heuristic limitations on the number of patterns be
/// employed. This useful to disable for benchmarking where one wants to
/// explore how Teddy performs on large number of patterns even if the
/// heuristics would otherwise refuse construction.
///
/// This is enabled by default.
pub fn heuristic_pattern_limits(&mut self, yes: bool) -> &mut Config {
self.heuristic_pattern_limits = yes;
self
}
}
/// A builder for constructing a packed searcher from a collection of patterns.
///
/// # Example
///
/// This example shows how to use a builder to construct a searcher. By
/// default, leftmost-first match semantics are used.
///
/// ```
/// use aho_corasick::{packed::{Builder, MatchKind}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Builder::new()
/// .add("foobar")
/// .add("foo")
/// .build()?;
/// let matches: Vec<PatternID> = searcher
/// .find_iter("foobar")
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![PatternID::ZERO], matches);
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// # target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// # example().unwrap()
/// # } else {
/// # assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
/// The configuration of this builder and subsequent matcher.
config: Config,
/// Set to true if the builder detects that a matcher cannot be built.
inert: bool,
/// The patterns provided by the caller.
patterns: Patterns,
}
impl Builder {
/// Create a new builder for constructing a multi-pattern searcher. This
/// constructor uses the default configuration.
pub fn new() -> Builder {
Builder::from_config(Config::new())
}
fn from_config(config: Config) -> Builder {
Builder { config, inert: false, patterns: Patterns::new() }
}
/// Build a searcher from the patterns added to this builder so far.
pub fn build(&self) -> Option<Searcher> {
if self.inert || self.patterns.is_empty() {
return None;
}
let mut patterns = self.patterns.clone();
patterns.set_match_kind(self.config.kind);
let patterns = Arc::new(patterns);
let rabinkarp = RabinKarp::new(&patterns);
// Effectively, we only want to return a searcher if we can use Teddy,
// since Teddy is our only fast packed searcher at the moment.
// Rabin-Karp is only used when searching haystacks smaller than what
// Teddy can support. Thus, the only way to get a Rabin-Karp searcher
// is to force it using undocumented APIs (for tests/benchmarks).
let (search_kind, minimum_len) = match self.config.force {
None | Some(ForceAlgorithm::Teddy) => {
debug!("trying to build Teddy packed matcher");
let teddy = match self.build_teddy(Arc::clone(&patterns)) {
None => return None,
Some(teddy) => teddy,
};
let minimum_len = teddy.minimum_len();
(SearchKind::Teddy(teddy), minimum_len)
}
Some(ForceAlgorithm::RabinKarp) => {
debug!("using Rabin-Karp packed matcher");
(SearchKind::RabinKarp, 0)
}
};
Some(Searcher { patterns, rabinkarp, search_kind, minimum_len })
}
fn build_teddy(&self, patterns: Arc<Patterns>) -> Option<teddy::Searcher> {
teddy::Builder::new()
.only_256bit(self.config.only_teddy_256bit)
.only_fat(self.config.only_teddy_fat)
.heuristic_pattern_limits(self.config.heuristic_pattern_limits)
.build(patterns)
}
/// Add the given pattern to this set to match.
///
/// The order in which patterns are added is significant. Namely, when
/// using leftmost-first match semantics, then when multiple patterns can
/// match at a particular location, the pattern that was added first is
/// used as the match.
///
/// If the number of patterns added exceeds the amount supported by packed
/// searchers, then the builder will stop accumulating patterns and render
/// itself inert. At this point, constructing a searcher will always return
/// `None`.
pub fn add<P: AsRef<[u8]>>(&mut self, pattern: P) -> &mut Builder {
if self.inert {
return self;
} else if self.patterns.len() >= PATTERN_LIMIT {
self.inert = true;
self.patterns.reset();
return self;
}
// Just in case PATTERN_LIMIT increases beyond u16::MAX.
assert!(self.patterns.len() <= core::u16::MAX as usize);
let pattern = pattern.as_ref();
if pattern.is_empty() {
self.inert = true;
self.patterns.reset();
return self;
}
self.patterns.add(pattern);
self
}
/// Add the given iterator of patterns to this set to match.
///
/// The iterator must yield elements that can be converted into a `&[u8]`.
///
/// The order in which patterns are added is significant. Namely, when
/// using leftmost-first match semantics, then when multiple patterns can
/// match at a particular location, the pattern that was added first is
/// used as the match.
///
/// If the number of patterns added exceeds the amount supported by packed
/// searchers, then the builder will stop accumulating patterns and render
/// itself inert. At this point, constructing a searcher will always return
/// `None`.
pub fn extend<I, P>(&mut self, patterns: I) -> &mut Builder
where
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
for p in patterns {
self.add(p);
}
self
}
/// Returns the number of patterns added to this builder.
pub fn len(&self) -> usize {
self.patterns.len()
}
/// Returns the length, in bytes, of the shortest pattern added.
pub fn minimum_len(&self) -> usize {
self.patterns.minimum_len()
}
}
impl Default for Builder {
fn default() -> Builder {
Builder::new()
}
}
/// A packed searcher for quickly finding occurrences of multiple patterns.
///
/// If callers need more flexible construction, or if one wants to change the
/// match semantics (either leftmost-first or leftmost-longest), then one can
/// use the [`Config`] and/or [`Builder`] types for more fine grained control.
///
/// # Example
///
/// This example shows how to create a searcher from an iterator of patterns.
/// By default, leftmost-first match semantics are used.
///
/// ```
/// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
/// let matches: Vec<PatternID> = searcher
/// .find_iter("foobar")
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![PatternID::ZERO], matches);
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// # target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// # example().unwrap()
/// # } else {
/// # assert!(example().is_none());
/// # }
/// ```
#[derive(Clone, Debug)]
pub struct Searcher {
patterns: Arc<Patterns>,
rabinkarp: RabinKarp,
search_kind: SearchKind,
minimum_len: usize,
}
#[derive(Clone, Debug)]
enum SearchKind {
Teddy(teddy::Searcher),
RabinKarp,
}
impl Searcher {
/// A convenience function for constructing a searcher from an iterator
/// of things that can be converted to a `&[u8]`.
///
/// If a searcher could not be constructed (either because of an
/// unsupported CPU or because there are too many patterns), then `None`
/// is returned.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
/// let matches: Vec<PatternID> = searcher
/// .find_iter("foobar")
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![PatternID::ZERO], matches);
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// # target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// # example().unwrap()
/// # } else {
/// # assert!(example().is_none());
/// # }
/// ```
pub fn new<I, P>(patterns: I) -> Option<Searcher>
where
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
Builder::new().extend(patterns).build()
}
/// A convenience function for calling `Config::new()`.
///
/// This is useful for avoiding an additional import.
pub fn config() -> Config {
Config::new()
}
/// A convenience function for calling `Builder::new()`.
///
/// This is useful for avoiding an additional import.
pub fn builder() -> Builder {
Builder::new()
}
/// Return the first occurrence of any of the patterns in this searcher,
/// according to its match semantics, in the given haystack. The `Match`
/// returned will include the identifier of the pattern that matched, which
/// corresponds to the index of the pattern (starting from `0`) in which it
/// was added.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
/// let mat = searcher.find("foobar")?;
/// assert_eq!(PatternID::ZERO, mat.pattern());
/// assert_eq!(0, mat.start());
/// assert_eq!(6, mat.end());
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// # target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// # example().unwrap()
/// # } else {
/// # assert!(example().is_none());
/// # }
/// ```
#[inline]
pub fn find<B: AsRef<[u8]>>(&self, haystack: B) -> Option<Match> {
let haystack = haystack.as_ref();
self.find_in(haystack, Span::from(0..haystack.len()))
}
/// Return the first occurrence of any of the patterns in this searcher,
/// according to its match semantics, in the given haystack starting from
/// the given position.
///
/// The `Match` returned will include the identifier of the pattern that
/// matched, which corresponds to the index of the pattern (starting from
/// `0`) in which it was added. The offsets in the `Match` will be relative
/// to the start of `haystack` (and not `at`).
///
/// # Example
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID, Span};
///
/// # fn example() -> Option<()> {
/// let haystack = "foofoobar";
/// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
/// let mat = searcher.find_in(haystack, Span::from(3..haystack.len()))?;
/// assert_eq!(PatternID::ZERO, mat.pattern());
/// assert_eq!(3, mat.start());
/// assert_eq!(9, mat.end());
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// # target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// # example().unwrap()
/// # } else {
/// # assert!(example().is_none());
/// # }
/// ```
#[inline]
pub fn find_in<B: AsRef<[u8]>>(
&self,
haystack: B,
span: Span,
) -> Option<Match> {
let haystack = haystack.as_ref();
match self.search_kind {
SearchKind::Teddy(ref teddy) => {
if haystack[span].len() < teddy.minimum_len() {
return self.find_in_slow(haystack, span);
}
teddy.find(&haystack[..span.end], span.start)
}
SearchKind::RabinKarp => {
self.rabinkarp.find_at(&haystack[..span.end], span.start)
}
}
}
/// Return an iterator of non-overlapping occurrences of the patterns in
/// this searcher, according to its match semantics, in the given haystack.
///
/// # Example
///
/// Basic usage:
///
/// ```
/// use aho_corasick::{packed::{MatchKind, Searcher}, PatternID};
///
/// # fn example() -> Option<()> {
/// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
/// let matches: Vec<PatternID> = searcher
/// .find_iter("foobar fooba foofoo")
/// .map(|mat| mat.pattern())
/// .collect();
/// assert_eq!(vec![
/// PatternID::must(0),
/// PatternID::must(1),
/// PatternID::must(1),
/// PatternID::must(1),
/// ], matches);
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// # target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// # example().unwrap()
/// # } else {
/// # assert!(example().is_none());
/// # }
/// ```
#[inline]
pub fn find_iter<'a, 'b, B: ?Sized + AsRef<[u8]>>(
&'a self,
haystack: &'b B,
) -> FindIter<'a, 'b> {
let haystack = haystack.as_ref();
let span = Span::from(0..haystack.len());
FindIter { searcher: self, haystack, span }
}
/// Returns the match kind used by this packed searcher.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::packed::{MatchKind, Searcher};
///
/// # fn example() -> Option<()> {
/// let searcher = Searcher::new(["foobar", "foo"].iter().cloned())?;
/// // leftmost-first is the default.
/// assert_eq!(&MatchKind::LeftmostFirst, searcher.match_kind());
/// # Some(()) }
/// # if cfg!(all(feature = "std", any(
/// # target_arch = "x86_64", target_arch = "aarch64",
/// # ))) {
/// # example().unwrap()
/// # } else {
/// # assert!(example().is_none());
/// # }
/// ```
#[inline]
pub fn match_kind(&self) -> &MatchKind {
self.patterns.match_kind()
}
/// Returns the minimum length of a haystack that is required in order for
/// packed searching to be effective.
///
/// In some cases, the underlying packed searcher may not be able to search
/// very short haystacks. When that occurs, the implementation will defer
/// to a slower non-packed searcher (which is still generally faster than
/// Aho-Corasick for a small number of patterns). However, callers may
/// want to avoid ever using the slower variant, which one can do by
/// never passing a haystack shorter than the minimum length returned by
/// this method.
#[inline]
pub fn minimum_len(&self) -> usize {
self.minimum_len
}
/// Returns the approximate total amount of heap used by this searcher, in
/// units of bytes.
#[inline]
pub fn memory_usage(&self) -> usize {
self.patterns.memory_usage()
+ self.rabinkarp.memory_usage()
+ self.search_kind.memory_usage()
}
/// Use a slow (non-packed) searcher.
///
/// This is useful when a packed searcher could be constructed, but could
/// not be used to search a specific haystack. For example, if Teddy was
/// built but the haystack is smaller than ~34 bytes, then Teddy might not
/// be able to run.
fn find_in_slow(&self, haystack: &[u8], span: Span) -> Option<Match> {
self.rabinkarp.find_at(&haystack[..span.end], span.start)
}
}
impl SearchKind {
fn memory_usage(&self) -> usize {
match *self {
SearchKind::Teddy(ref ted) => ted.memory_usage(),
SearchKind::RabinKarp => 0,
}
}
}
/// An iterator over non-overlapping matches from a packed searcher.
///
/// The lifetime `'s` refers to the lifetime of the underlying [`Searcher`],
/// while the lifetime `'h` refers to the lifetime of the haystack being
/// searched.
#[derive(Debug)]
pub struct FindIter<'s, 'h> {
searcher: &'s Searcher,
haystack: &'h [u8],
span: Span,
}
impl<'s, 'h> Iterator for FindIter<'s, 'h> {
type Item = Match;
fn next(&mut self) -> Option<Match> {
if self.span.start > self.span.end {
return None;
}
match self.searcher.find_in(&self.haystack, self.span) {
None => None,
Some(m) => {
self.span.start = m.end();
Some(m)
}
}
}
}