jiff/
zoned.rs

1use core::time::Duration as UnsignedDuration;
2
3use crate::{
4    civil::{
5        Date, DateTime, DateTimeRound, DateTimeWith, Era, ISOWeekDate, Time,
6        Weekday,
7    },
8    duration::{Duration, SDuration},
9    error::{err, Error, ErrorContext},
10    fmt::{
11        self,
12        temporal::{self, DEFAULT_DATETIME_PARSER},
13    },
14    tz::{AmbiguousOffset, Disambiguation, Offset, OffsetConflict, TimeZone},
15    util::{
16        rangeint::{RInto, TryRFrom},
17        round::increment,
18        t::{self, ZonedDayNanoseconds, C},
19    },
20    RoundMode, SignedDuration, Span, SpanRound, Timestamp, Unit,
21};
22
23/// A time zone aware instant in time.
24///
25/// A `Zoned` value can be thought of as the combination of following types,
26/// all rolled into one:
27///
28/// * A [`Timestamp`] for indicating the precise instant in time.
29/// * A [`DateTime`] for indicating the "civil" calendar date and clock time.
30/// * A [`TimeZone`] for indicating how to apply time zone transitions while
31/// performing arithmetic.
32///
33/// In particular, a `Zoned` is specifically designed for dealing with
34/// datetimes in a time zone aware manner. Here are some highlights:
35///
36/// * Arithmetic automatically adjusts for daylight saving time (DST), using
37/// the rules defined by [RFC 5545].
38/// * Creating new `Zoned` values from other `Zoned` values via [`Zoned::with`]
39/// by changing clock time (e.g., `02:30`) can do so without worrying that the
40/// time will be invalid due to DST transitions.
41/// * An approximate superset of the [`DateTime`] API is offered on `Zoned`,
42/// but where each of its operations take time zone into account when
43/// appropriate. For example, [`DateTime::start_of_day`] always returns a
44/// datetime set to midnight, but [`Zoned::start_of_day`] returns the first
45/// instant of a day, which might not be midnight if there is a time zone
46/// transition at midnight.
47/// * When using a `Zoned`, it is easy to switch between civil datetime (the
48/// day you see on the calendar and the time you see on the clock) and Unix
49/// time (a precise instant in time). Indeed, a `Zoned` can be losslessy
50/// converted to any other datetime type in this crate: [`Timestamp`],
51/// [`DateTime`], [`Date`] and [`Time`].
52/// * A `Zoned` value can be losslessly serialized and deserialized, via
53/// [serde], by adhering to [RFC 8536]. An example of a serialized zoned
54/// datetime is `2024-07-04T08:39:00-04:00[America/New_York]`.
55/// * Since a `Zoned` stores a [`TimeZone`] itself, multiple time zone aware
56/// operations can be chained together without repeatedly specifying the time
57/// zone.
58///
59/// [RFC 5545]: https://datatracker.ietf.org/doc/html/rfc5545
60/// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536
61/// [serde]: https://serde.rs/
62///
63/// # Parsing and printing
64///
65/// The `Zoned` type provides convenient trait implementations of
66/// [`std::str::FromStr`] and [`std::fmt::Display`]:
67///
68/// ```
69/// use jiff::Zoned;
70///
71/// let zdt: Zoned = "2024-06-19 15:22[America/New_York]".parse()?;
72/// // Notice that the second component and the offset have both been added.
73/// assert_eq!(zdt.to_string(), "2024-06-19T15:22:00-04:00[America/New_York]");
74///
75/// // While in the above case the datetime is unambiguous, in some cases, it
76/// // can be ambiguous. In these cases, an offset is required to correctly
77/// // roundtrip a zoned datetime. For example, on 2024-11-03 in New York, the
78/// // 1 o'clock hour was repeated twice, corresponding to the end of daylight
79/// // saving time.
80/// //
81/// // So because of the ambiguity, this time could be in offset -04 (the first
82/// // time 1 o'clock is on the clock) or it could be -05 (the second time
83/// // 1 o'clock is on the clock, corresponding to the end of DST).
84/// //
85/// // By default, parsing uses a "compatible" strategy for resolving all cases
86/// // of ambiguity: in forward transitions (gaps), the later time is selected.
87/// // And in backward transitions (folds), the earlier time is selected.
88/// let zdt: Zoned = "2024-11-03 01:30[America/New_York]".parse()?;
89/// // As we can see, since this was a fold, the earlier time was selected
90/// // because the -04 offset is the first time 1 o'clock appears on the clock.
91/// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]");
92/// // But if we changed the offset and re-serialized, the only thing that
93/// // changes is, indeed, the offset. This demonstrates that the offset is
94/// // key to ensuring lossless serialization.
95/// let zdt = zdt.with().offset(jiff::tz::offset(-5)).build()?;
96/// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-05:00[America/New_York]");
97///
98/// # Ok::<(), Box<dyn std::error::Error>>(())
99/// ```
100///
101/// A `Zoned` can also be parsed from just a time zone aware date (but the
102/// time zone annotation is still required). In this case, the time is set to
103/// midnight:
104///
105/// ```
106/// use jiff::Zoned;
107///
108/// let zdt: Zoned = "2024-06-19[America/New_York]".parse()?;
109/// assert_eq!(zdt.to_string(), "2024-06-19T00:00:00-04:00[America/New_York]");
110/// // ... although it isn't always midnight, in the case of a time zone
111/// // transition at midnight!
112/// let zdt: Zoned = "2015-10-18[America/Sao_Paulo]".parse()?;
113/// assert_eq!(zdt.to_string(), "2015-10-18T01:00:00-02:00[America/Sao_Paulo]");
114///
115/// # Ok::<(), Box<dyn std::error::Error>>(())
116/// ```
117///
118/// For more information on the specific format supported, see the
119/// [`fmt::temporal`](crate::fmt::temporal) module documentation.
120///
121/// # Leap seconds
122///
123/// Jiff does not support leap seconds. Jiff behaves as if they don't exist.
124/// The only exception is that if one parses a datetime with a second component
125/// of `60`, then it is automatically constrained to `59`:
126///
127/// ```
128/// use jiff::{civil::date, Zoned};
129///
130/// let zdt: Zoned = "2016-12-31 23:59:60[Australia/Tasmania]".parse()?;
131/// assert_eq!(zdt.datetime(), date(2016, 12, 31).at(23, 59, 59, 0));
132///
133/// # Ok::<(), Box<dyn std::error::Error>>(())
134/// ```
135///
136/// # Comparisons
137///
138/// The `Zoned` type provides both `Eq` and `Ord` trait implementations to
139/// facilitate easy comparisons. When a zoned datetime `zdt1` occurs before a
140/// zoned datetime `zdt2`, then `zdt1 < zdt2`. For example:
141///
142/// ```
143/// use jiff::civil::date;
144///
145/// let zdt1 = date(2024, 3, 11).at(1, 25, 15, 0).in_tz("America/New_York")?;
146/// let zdt2 = date(2025, 1, 31).at(0, 30, 0, 0).in_tz("America/New_York")?;
147/// assert!(zdt1 < zdt2);
148///
149/// # Ok::<(), Box<dyn std::error::Error>>(())
150/// ```
151///
152/// Note that `Zoned` comparisons only consider the precise instant in time.
153/// The civil datetime or even the time zone are completely ignored. So it's
154/// possible for a zoned datetime to be less than another even if it's civil
155/// datetime is bigger:
156///
157/// ```
158/// use jiff::civil::date;
159///
160/// let zdt1 = date(2024, 7, 4).at(12, 0, 0, 0).in_tz("America/New_York")?;
161/// let zdt2 = date(2024, 7, 4).at(11, 0, 0, 0).in_tz("America/Los_Angeles")?;
162/// assert!(zdt1 < zdt2);
163/// // But if we only compare civil datetime, the result is flipped:
164/// assert!(zdt1.datetime() > zdt2.datetime());
165///
166/// # Ok::<(), Box<dyn std::error::Error>>(())
167/// ```
168///
169/// The same applies for equality as well. Two `Zoned` values are equal, even
170/// if they have different time zones, when the instant in time is identical:
171///
172/// ```
173/// use jiff::civil::date;
174///
175/// let zdt1 = date(2024, 7, 4).at(12, 0, 0, 0).in_tz("America/New_York")?;
176/// let zdt2 = date(2024, 7, 4).at(9, 0, 0, 0).in_tz("America/Los_Angeles")?;
177/// assert_eq!(zdt1, zdt2);
178///
179/// # Ok::<(), Box<dyn std::error::Error>>(())
180/// ```
181///
182/// (Note that this is diifferent from
183/// [Temporal's `ZonedDateTime.equals`][temporal-equals] comparison, which will
184/// take time zone into account for equality. This is because `Eq` and `Ord`
185/// trait implementations must be consistent in Rust. If you need Temporal's
186/// behavior, then use `zdt1 == zdt2 && zdt1.time_zone() == zdt2.time_zone()`.)
187///
188/// [temporal-equals]: https://tc39.es/proposal-temporal/docs/zoneddatetime.html#equals
189///
190/// # Arithmetic
191///
192/// This type provides routines for adding and subtracting spans of time, as
193/// well as computing the span of time between two `Zoned` values. These
194/// operations take time zones into account.
195///
196/// For adding or subtracting spans of time, one can use any of the following
197/// routines:
198///
199/// * [`Zoned::checked_add`] or [`Zoned::checked_sub`] for checked
200/// arithmetic.
201/// * [`Zoned::saturating_add`] or [`Zoned::saturating_sub`] for
202/// saturating arithmetic.
203///
204/// Additionally, checked arithmetic is available via the `Add` and `Sub`
205/// trait implementations. When the result overflows, a panic occurs.
206///
207/// ```
208/// use jiff::{civil::date, ToSpan};
209///
210/// let start = date(2024, 2, 25).at(15, 45, 0, 0).in_tz("America/New_York")?;
211/// // `Zoned` doesn't implement `Copy`, so we use `&start` instead of `start`.
212/// let one_week_later = &start + 1.weeks();
213/// assert_eq!(one_week_later.datetime(), date(2024, 3, 3).at(15, 45, 0, 0));
214///
215/// # Ok::<(), Box<dyn std::error::Error>>(())
216/// ```
217///
218/// One can compute the span of time between two zoned datetimes using either
219/// [`Zoned::until`] or [`Zoned::since`]. It's also possible to subtract
220/// two `Zoned` values directly via a `Sub` trait implementation:
221///
222/// ```
223/// use jiff::{civil::date, ToSpan};
224///
225/// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York")?;
226/// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York")?;
227/// assert_eq!(&zdt1 - &zdt2, 1647.hours().minutes(30).fieldwise());
228///
229/// # Ok::<(), Box<dyn std::error::Error>>(())
230/// ```
231///
232/// The `until` and `since` APIs are polymorphic and allow re-balancing and
233/// rounding the span returned. For example, the default largest unit is hours
234/// (as exemplified above), but we can ask for bigger units:
235///
236/// ```
237/// use jiff::{civil::date, ToSpan, Unit};
238///
239/// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York")?;
240/// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York")?;
241/// assert_eq!(
242///     zdt1.since((Unit::Year, &zdt2))?,
243///     2.months().days(7).hours(16).minutes(30).fieldwise(),
244/// );
245///
246/// # Ok::<(), Box<dyn std::error::Error>>(())
247/// ```
248///
249/// Or even round the span returned:
250///
251/// ```
252/// use jiff::{civil::date, RoundMode, ToSpan, Unit, ZonedDifference};
253///
254/// let zdt1 = date(2024, 5, 3).at(23, 30, 0, 0).in_tz("America/New_York")?;
255/// let zdt2 = date(2024, 2, 25).at(7, 0, 0, 0).in_tz("America/New_York")?;
256/// assert_eq!(
257///     zdt1.since(
258///         ZonedDifference::new(&zdt2)
259///             .smallest(Unit::Day)
260///             .largest(Unit::Year),
261///     )?,
262///     2.months().days(7).fieldwise(),
263/// );
264/// // `ZonedDifference` uses truncation as a rounding mode by default,
265/// // but you can set the rounding mode to break ties away from zero:
266/// assert_eq!(
267///     zdt1.since(
268///         ZonedDifference::new(&zdt2)
269///             .smallest(Unit::Day)
270///             .largest(Unit::Year)
271///             .mode(RoundMode::HalfExpand),
272///     )?,
273///     // Rounds up to 8 days.
274///     2.months().days(8).fieldwise(),
275/// );
276///
277/// # Ok::<(), Box<dyn std::error::Error>>(())
278/// ```
279///
280/// # Rounding
281///
282/// A `Zoned` can be rounded based on a [`ZonedRound`] configuration of
283/// smallest units, rounding increment and rounding mode. Here's an example
284/// showing how to round to the nearest third hour:
285///
286/// ```
287/// use jiff::{civil::date, Unit, ZonedRound};
288///
289/// let zdt = date(2024, 6, 19)
290///     .at(16, 27, 29, 999_999_999)
291///     .in_tz("America/New_York")?;
292/// assert_eq!(
293///     zdt.round(ZonedRound::new().smallest(Unit::Hour).increment(3))?,
294///     date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York")?,
295/// );
296/// // Or alternatively, make use of the `From<(Unit, i64)> for ZonedRound`
297/// // trait implementation:
298/// assert_eq!(
299///     zdt.round((Unit::Hour, 3))?,
300///     date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York")?,
301/// );
302///
303/// # Ok::<(), Box<dyn std::error::Error>>(())
304/// ```
305///
306/// See [`Zoned::round`] for more details.
307#[derive(Clone)]
308pub struct Zoned {
309    inner: ZonedInner,
310}
311
312/// The representation of a `Zoned`.
313///
314/// This uses 4 different things: a timestamp, a datetime, an offset and a
315/// time zone. This in turn makes `Zoned` a bit beefy (40 bytes on x86-64),
316/// but I think this is probably the right trade off. (At time of writing,
317/// 2024-07-04.)
318///
319/// Technically speaking, the only essential fields here are timestamp and time
320/// zone. The datetime and offset can both be unambiguously _computed_ from the
321/// combination of a timestamp and a time zone. Indeed, just the timestamp and
322/// the time zone was my initial representation. But as I developed the API of
323/// this type, it became clearer that we should probably store the datetime and
324/// offset as well.
325///
326/// The main issue here is that in order to compute the datetime from a
327/// timestamp and a time zone, you need to do two things:
328///
329/// 1. First, compute the offset. This means doing a binary search on the TZif
330/// data for the transition (or closest transition) matching the timestamp.
331/// 2. Second, use the offset (from UTC) to convert the timestamp into a civil
332/// datetime. This involves a "Unix time to Unix epoch days" conversion that
333/// requires some heavy arithmetic.
334///
335/// So if we don't store the datetime or offset, then we need to compute them
336/// any time we need them. And the Temporal design really pushes heavily in
337/// favor of treating the "instant in time" and "civil datetime" as two sides
338/// to the same coin. That means users are very encouraged to just use whatever
339/// they need. So if we are always computing the offset and datetime whenever
340/// we need them, we're potentially punishing users for working with civil
341/// datetimes. It just doesn't feel like the right trade-off.
342///
343/// Instead, my idea here is that, ultimately, `Zoned` is meant to provide
344/// a one-stop shop for "doing the right thing." Presenting that unified
345/// abstraction comes with costs. And that if we want to expose cheaper ways
346/// of performing at least some of the operations on `Zoned` by making fewer
347/// assumptions, then we should probably endeavor to do that by exposing a
348/// lower level API. I'm not sure what that would look like, so I think it
349/// should be driven by use cases.
350///
351/// Some other things I considered:
352///
353/// * Use `Zoned(Arc<ZonedInner>)` to make `Zoned` pointer-sized. But I didn't
354/// like this because it implies creating any new `Zoned` value requires an
355/// allocation. Since a `TimeZone` internally uses an `Arc`, all it requires
356/// today is a chunky memcpy and an atomic ref count increment.
357/// * Use `OnceLock` shenanigans for the datetime and offset fields. This would
358/// make `Zoned` even beefier and I wasn't totally clear how much this would
359/// save us. And it would impose some (probably small) cost on every datetime
360/// or offset access.
361/// * Use a radically different design that permits a `Zoned` to be `Copy`.
362/// I personally find it deeply annoying that `Zoned` is both the "main"
363/// datetime type in Jiff and also the only one that doesn't implement `Copy`.
364/// I explored some designs, but I couldn't figure out how to make it work in
365/// a satisfying way. The main issue here is `TimeZone`. A `TimeZone` is a huge
366/// chunk of data and the ergonomics of the `Zoned` API require being able to
367/// access a `TimeZone` without the caller providing it explicitly. So to me,
368/// the only real alternative here is to use some kind of integer handle into
369/// a global time zone database. But now you all of a sudden need to worry
370/// about synchronization for every time zone access and plausibly also garbage
371/// collection. And this also complicates matters for using custom time zone
372/// databases. So I ultimately came down on "Zoned is not Copy" as the least
373/// awful choice. *heavy sigh*
374#[derive(Clone)]
375struct ZonedInner {
376    timestamp: Timestamp,
377    datetime: DateTime,
378    offset: Offset,
379    time_zone: TimeZone,
380}
381
382impl Zoned {
383    /// Returns the current system time in this system's time zone.
384    ///
385    /// If the system's time zone could not be found, then [`TimeZone::UTC`]
386    /// is used instead. When this happens, a `WARN` level log message will
387    /// be emitted. (To see it, one will need to install a logger that is
388    /// compatible with the `log` crate and enable Jiff's `logging` Cargo
389    /// feature.)
390    ///
391    /// To create a `Zoned` value for the current time in a particular
392    /// time zone other than the system default time zone, use
393    /// `Timestamp::now().to_zoned(time_zone)`. In particular, using
394    /// [`Timestamp::now`] avoids the work required to fetch the system time
395    /// zone if you did `Zoned::now().with_time_zone(time_zone)`.
396    ///
397    /// # Panics
398    ///
399    /// This panics if the system clock is set to a time value outside of the
400    /// range `-009999-01-01T00:00:00Z..=9999-12-31T11:59:59.999999999Z`. The
401    /// justification here is that it is reasonable to expect the system clock
402    /// to be set to a somewhat sane, if imprecise, value.
403    ///
404    /// If you want to get the current Unix time fallibly, use
405    /// [`Zoned::try_from`] with a `std::time::SystemTime` as input.
406    ///
407    /// This may also panic when `SystemTime::now()` itself panics. The most
408    /// common context in which this happens is on the `wasm32-unknown-unknown`
409    /// target. If you're using that target in the context of the web (for
410    /// example, via `wasm-pack`), and you're an application, then you should
411    /// enable Jiff's `js` feature. This will automatically instruct Jiff in
412    /// this very specific circumstance to execute JavaScript code to determine
413    /// the current time from the web browser.
414    ///
415    /// # Example
416    ///
417    /// ```
418    /// use jiff::{Timestamp, Zoned};
419    ///
420    /// assert!(Zoned::now().timestamp() > Timestamp::UNIX_EPOCH);
421    /// ```
422    #[cfg(feature = "std")]
423    #[inline]
424    pub fn now() -> Zoned {
425        Zoned::try_from(crate::now::system_time())
426            .expect("system time is valid")
427    }
428
429    /// Creates a new `Zoned` value from a specific instant in a particular
430    /// time zone. The time zone determines how to render the instant in time
431    /// into civil time. (Also known as "clock," "wall," "local" or "naive"
432    /// time.)
433    ///
434    /// To create a new zoned datetime from another with a particular field
435    /// value, use the methods on [`ZonedWith`] via [`Zoned::with`].
436    ///
437    /// # Construction from civil time
438    ///
439    /// A `Zoned` value can also be created from a civil time via the following
440    /// methods:
441    ///
442    /// * [`DateTime::in_tz`] does a Time Zone Database lookup given a time
443    /// zone name string.
444    /// * [`DateTime::to_zoned`] accepts a `TimeZone`.
445    /// * [`Date::in_tz`] does a Time Zone Database lookup given a time zone
446    /// name string and attempts to use midnight as the clock time.
447    /// * [`Date::to_zoned`] accepts a `TimeZone` and attempts to use midnight
448    /// as the clock time.
449    ///
450    /// Whenever one is converting from civil time to a zoned
451    /// datetime, it is possible for the civil time to be ambiguous.
452    /// That is, it might be a clock reading that could refer to
453    /// multiple possible instants in time, or it might be a clock
454    /// reading that never exists. The above routines will use a
455    /// [`Disambiguation::Compatible`]
456    /// strategy to automatically resolve these corner cases.
457    ///
458    /// If one wants to control how ambiguity is resolved (including
459    /// by returning an error), use [`TimeZone::to_ambiguous_zoned`]
460    /// and select the desired strategy via a method on
461    /// [`AmbiguousZoned`](crate::tz::AmbiguousZoned).
462    ///
463    /// # Example: What was the civil time in Tasmania at the Unix epoch?
464    ///
465    /// ```
466    /// use jiff::{tz::TimeZone, Timestamp, Zoned};
467    ///
468    /// let tz = TimeZone::get("Australia/Tasmania")?;
469    /// let zdt = Zoned::new(Timestamp::UNIX_EPOCH, tz);
470    /// assert_eq!(
471    ///     zdt.to_string(),
472    ///     "1970-01-01T11:00:00+11:00[Australia/Tasmania]",
473    /// );
474    ///
475    /// # Ok::<(), Box<dyn std::error::Error>>(())
476    /// ```
477    ///
478    /// # Example: What was the civil time in New York when World War 1 ended?
479    ///
480    /// ```
481    /// use jiff::civil::date;
482    ///
483    /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).in_tz("Europe/Paris")?;
484    /// let zdt2 = zdt1.in_tz("America/New_York")?;
485    /// assert_eq!(
486    ///     zdt2.to_string(),
487    ///     "1918-11-11T06:00:00-05:00[America/New_York]",
488    /// );
489    ///
490    /// # Ok::<(), Box<dyn std::error::Error>>(())
491    /// ```
492    #[inline]
493    pub fn new(timestamp: Timestamp, time_zone: TimeZone) -> Zoned {
494        let offset = time_zone.to_offset(timestamp);
495        let datetime = offset.to_datetime(timestamp);
496        let inner = ZonedInner { timestamp, datetime, offset, time_zone };
497        Zoned { inner }
498    }
499
500    /// A crate internal constructor for building a `Zoned` from its
501    /// constituent parts.
502    ///
503    /// This should basically never be exposed, because it can be quite tricky
504    /// to get the parts correct.
505    ///
506    /// See `civil::DateTime::to_zoned` for a use case for this routine. (Why
507    /// do you think? Perf!)
508    #[inline]
509    pub(crate) fn from_parts(
510        timestamp: Timestamp,
511        time_zone: TimeZone,
512        offset: Offset,
513        datetime: DateTime,
514    ) -> Zoned {
515        let inner = ZonedInner { timestamp, datetime, offset, time_zone };
516        Zoned { inner }
517    }
518
519    /// Create a builder for constructing a new `DateTime` from the fields of
520    /// this datetime.
521    ///
522    /// See the methods on [`ZonedWith`] for the different ways one can set
523    /// the fields of a new `Zoned`.
524    ///
525    /// Note that this doesn't support changing the time zone. If you want a
526    /// `Zoned` value of the same instant but in a different time zone, use
527    /// [`Zoned::in_tz`] or [`Zoned::with_time_zone`]. If you want a `Zoned`
528    /// value of the same civil datetime (assuming it isn't ambiguous) but in
529    /// a different time zone, then use [`Zoned::datetime`] followed by
530    /// [`DateTime::in_tz`] or [`DateTime::to_zoned`].
531    ///
532    /// # Example
533    ///
534    /// The builder ensures one can chain together the individual components
535    /// of a zoned datetime without it failing at an intermediate step. For
536    /// example, if you had a date of `2024-10-31T00:00:00[America/New_York]`
537    /// and wanted to change both the day and the month, and each setting was
538    /// validated independent of the other, you would need to be careful to set
539    /// the day first and then the month. In some cases, you would need to set
540    /// the month first and then the day!
541    ///
542    /// But with the builder, you can set values in any order:
543    ///
544    /// ```
545    /// use jiff::civil::date;
546    ///
547    /// let zdt1 = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York")?;
548    /// let zdt2 = zdt1.with().month(11).day(30).build()?;
549    /// assert_eq!(
550    ///     zdt2,
551    ///     date(2024, 11, 30).at(0, 0, 0, 0).in_tz("America/New_York")?,
552    /// );
553    ///
554    /// let zdt1 = date(2024, 4, 30).at(0, 0, 0, 0).in_tz("America/New_York")?;
555    /// let zdt2 = zdt1.with().day(31).month(7).build()?;
556    /// assert_eq!(
557    ///     zdt2,
558    ///     date(2024, 7, 31).at(0, 0, 0, 0).in_tz("America/New_York")?,
559    /// );
560    ///
561    /// # Ok::<(), Box<dyn std::error::Error>>(())
562    /// ```
563    #[inline]
564    pub fn with(&self) -> ZonedWith {
565        ZonedWith::new(self.clone())
566    }
567
568    /// Return a new zoned datetime with precisely the same instant in a
569    /// different time zone.
570    ///
571    /// The zoned datetime returned is guaranteed to have an equivalent
572    /// [`Timestamp`]. However, its civil [`DateTime`] may be different.
573    ///
574    /// # Example: What was the civil time in New York when World War 1 ended?
575    ///
576    /// ```
577    /// use jiff::{civil::date, tz::TimeZone};
578    ///
579    /// let from = TimeZone::get("Europe/Paris")?;
580    /// let to = TimeZone::get("America/New_York")?;
581    /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).to_zoned(from)?;
582    /// // Switch zdt1 to a different time zone, but keeping the same instant
583    /// // in time. The civil time changes, but not the instant!
584    /// let zdt2 = zdt1.with_time_zone(to);
585    /// assert_eq!(
586    ///     zdt2.to_string(),
587    ///     "1918-11-11T06:00:00-05:00[America/New_York]",
588    /// );
589    ///
590    /// # Ok::<(), Box<dyn std::error::Error>>(())
591    /// ```
592    #[inline]
593    pub fn with_time_zone(&self, time_zone: TimeZone) -> Zoned {
594        Zoned::new(self.timestamp(), time_zone)
595    }
596
597    /// Return a new zoned datetime with precisely the same instant in a
598    /// different time zone.
599    ///
600    /// The zoned datetime returned is guaranteed to have an equivalent
601    /// [`Timestamp`]. However, its civil [`DateTime`] may be different.
602    ///
603    /// The name given is resolved to a [`TimeZone`] by using the default
604    /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase) created by
605    /// [`tz::db`](crate::tz::db). Indeed, this is a convenience function for
606    /// [`DateTime::to_zoned`] where the time zone database lookup is done
607    /// automatically.
608    ///
609    /// # Errors
610    ///
611    /// This returns an error when the given time zone name could not be found
612    /// in the default time zone database.
613    ///
614    /// # Example: What was the civil time in New York when World War 1 ended?
615    ///
616    /// ```
617    /// use jiff::civil::date;
618    ///
619    /// let zdt1 = date(1918, 11, 11).at(11, 0, 0, 0).in_tz("Europe/Paris")?;
620    /// // Switch zdt1 to a different time zone, but keeping the same instant
621    /// // in time. The civil time changes, but not the instant!
622    /// let zdt2 = zdt1.in_tz("America/New_York")?;
623    /// assert_eq!(
624    ///     zdt2.to_string(),
625    ///     "1918-11-11T06:00:00-05:00[America/New_York]",
626    /// );
627    ///
628    /// # Ok::<(), Box<dyn std::error::Error>>(())
629    /// ```
630    #[inline]
631    pub fn in_tz(&self, name: &str) -> Result<Zoned, Error> {
632        let tz = crate::tz::db().get(name)?;
633        Ok(self.with_time_zone(tz))
634    }
635
636    /// Returns the time zone attached to this [`Zoned`] value.
637    ///
638    /// A time zone is more than just an offset. A time zone is a series of
639    /// rules for determining the civil time for a corresponding instant.
640    /// Indeed, a zoned datetime uses its time zone to perform zone-aware
641    /// arithmetic, rounding and serialization.
642    ///
643    /// # Example
644    ///
645    /// ```
646    /// use jiff::Zoned;
647    ///
648    /// let zdt: Zoned = "2024-07-03 14:31[america/new_york]".parse()?;
649    /// assert_eq!(zdt.time_zone().iana_name(), Some("America/New_York"));
650    ///
651    /// # Ok::<(), Box<dyn std::error::Error>>(())
652    /// ```
653    #[inline]
654    pub fn time_zone(&self) -> &TimeZone {
655        &self.inner.time_zone
656    }
657
658    /// Returns the year for this zoned datetime.
659    ///
660    /// The value returned is guaranteed to be in the range `-9999..=9999`.
661    ///
662    /// # Example
663    ///
664    /// ```
665    /// use jiff::civil::date;
666    ///
667    /// let zdt1 = date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?;
668    /// assert_eq!(zdt1.year(), 2024);
669    ///
670    /// let zdt2 = date(-2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?;
671    /// assert_eq!(zdt2.year(), -2024);
672    ///
673    /// let zdt3 = date(0, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?;
674    /// assert_eq!(zdt3.year(), 0);
675    ///
676    /// # Ok::<(), Box<dyn std::error::Error>>(())
677    /// ```
678    #[inline]
679    pub fn year(&self) -> i16 {
680        self.date().year()
681    }
682
683    /// Returns the year and its era.
684    ///
685    /// This crate specifically allows years to be negative or `0`, where as
686    /// years written for the Gregorian calendar are always positive and
687    /// greater than `0`. In the Gregorian calendar, the era labels `BCE` and
688    /// `CE` are used to disambiguate between years less than or equal to `0`
689    /// and years greater than `0`, respectively.
690    ///
691    /// The crate is designed this way so that years in the latest era (that
692    /// is, `CE`) are aligned with years in this crate.
693    ///
694    /// The year returned is guaranteed to be in the range `1..=10000`.
695    ///
696    /// # Example
697    ///
698    /// ```
699    /// use jiff::civil::{Era, date};
700    ///
701    /// let zdt = date(2024, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
702    /// assert_eq!(zdt.era_year(), (2024, Era::CE));
703    ///
704    /// let zdt = date(1, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
705    /// assert_eq!(zdt.era_year(), (1, Era::CE));
706    ///
707    /// let zdt = date(0, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
708    /// assert_eq!(zdt.era_year(), (1, Era::BCE));
709    ///
710    /// let zdt = date(-1, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
711    /// assert_eq!(zdt.era_year(), (2, Era::BCE));
712    ///
713    /// let zdt = date(-10, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
714    /// assert_eq!(zdt.era_year(), (11, Era::BCE));
715    ///
716    /// let zdt = date(-9_999, 10, 3).at(7, 30, 0, 0).in_tz("America/New_York")?;
717    /// assert_eq!(zdt.era_year(), (10_000, Era::BCE));
718    ///
719    /// # Ok::<(), Box<dyn std::error::Error>>(())
720    /// ```
721    #[inline]
722    pub fn era_year(&self) -> (i16, Era) {
723        self.date().era_year()
724    }
725
726    /// Returns the month for this zoned datetime.
727    ///
728    /// The value returned is guaranteed to be in the range `1..=12`.
729    ///
730    /// # Example
731    ///
732    /// ```
733    /// use jiff::civil::date;
734    ///
735    /// let zdt = date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?;
736    /// assert_eq!(zdt.month(), 3);
737    ///
738    /// # Ok::<(), Box<dyn std::error::Error>>(())
739    /// ```
740    #[inline]
741    pub fn month(&self) -> i8 {
742        self.date().month()
743    }
744
745    /// Returns the day for this zoned datetime.
746    ///
747    /// The value returned is guaranteed to be in the range `1..=31`.
748    ///
749    /// # Example
750    ///
751    /// ```
752    /// use jiff::civil::date;
753    ///
754    /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?;
755    /// assert_eq!(zdt.day(), 29);
756    ///
757    /// # Ok::<(), Box<dyn std::error::Error>>(())
758    /// ```
759    #[inline]
760    pub fn day(&self) -> i8 {
761        self.date().day()
762    }
763
764    /// Returns the "hour" component of this zoned datetime.
765    ///
766    /// The value returned is guaranteed to be in the range `0..=23`.
767    ///
768    /// # Example
769    ///
770    /// ```
771    /// use jiff::civil::date;
772    ///
773    /// let zdt = date(2000, 1, 2)
774    ///     .at(3, 4, 5, 123_456_789)
775    ///     .in_tz("America/New_York")?;
776    /// assert_eq!(zdt.hour(), 3);
777    ///
778    /// # Ok::<(), Box<dyn std::error::Error>>(())
779    /// ```
780    #[inline]
781    pub fn hour(&self) -> i8 {
782        self.time().hour()
783    }
784
785    /// Returns the "minute" component of this zoned datetime.
786    ///
787    /// The value returned is guaranteed to be in the range `0..=59`.
788    ///
789    /// # Example
790    ///
791    /// ```
792    /// use jiff::civil::date;
793    ///
794    /// let zdt = date(2000, 1, 2)
795    ///     .at(3, 4, 5, 123_456_789)
796    ///     .in_tz("America/New_York")?;
797    /// assert_eq!(zdt.minute(), 4);
798    ///
799    /// # Ok::<(), Box<dyn std::error::Error>>(())
800    /// ```
801    #[inline]
802    pub fn minute(&self) -> i8 {
803        self.time().minute()
804    }
805
806    /// Returns the "second" component of this zoned datetime.
807    ///
808    /// The value returned is guaranteed to be in the range `0..=59`.
809    ///
810    /// # Example
811    ///
812    /// ```
813    /// use jiff::civil::date;
814    ///
815    /// let zdt = date(2000, 1, 2)
816    ///     .at(3, 4, 5, 123_456_789)
817    ///     .in_tz("America/New_York")?;
818    /// assert_eq!(zdt.second(), 5);
819    ///
820    /// # Ok::<(), Box<dyn std::error::Error>>(())
821    /// ```
822    #[inline]
823    pub fn second(&self) -> i8 {
824        self.time().second()
825    }
826
827    /// Returns the "millisecond" component of this zoned datetime.
828    ///
829    /// The value returned is guaranteed to be in the range `0..=999`.
830    ///
831    /// # Example
832    ///
833    /// ```
834    /// use jiff::civil::date;
835    ///
836    /// let zdt = date(2000, 1, 2)
837    ///     .at(3, 4, 5, 123_456_789)
838    ///     .in_tz("America/New_York")?;
839    /// assert_eq!(zdt.millisecond(), 123);
840    ///
841    /// # Ok::<(), Box<dyn std::error::Error>>(())
842    /// ```
843    #[inline]
844    pub fn millisecond(&self) -> i16 {
845        self.time().millisecond()
846    }
847
848    /// Returns the "microsecond" component of this zoned datetime.
849    ///
850    /// The value returned is guaranteed to be in the range `0..=999`.
851    ///
852    /// # Example
853    ///
854    /// ```
855    /// use jiff::civil::date;
856    ///
857    /// let zdt = date(2000, 1, 2)
858    ///     .at(3, 4, 5, 123_456_789)
859    ///     .in_tz("America/New_York")?;
860    /// assert_eq!(zdt.microsecond(), 456);
861    ///
862    /// # Ok::<(), Box<dyn std::error::Error>>(())
863    /// ```
864    #[inline]
865    pub fn microsecond(&self) -> i16 {
866        self.time().microsecond()
867    }
868
869    /// Returns the "nanosecond" component of this zoned datetime.
870    ///
871    /// The value returned is guaranteed to be in the range `0..=999`.
872    ///
873    /// # Example
874    ///
875    /// ```
876    /// use jiff::civil::date;
877    ///
878    /// let zdt = date(2000, 1, 2)
879    ///     .at(3, 4, 5, 123_456_789)
880    ///     .in_tz("America/New_York")?;
881    /// assert_eq!(zdt.nanosecond(), 789);
882    ///
883    /// # Ok::<(), Box<dyn std::error::Error>>(())
884    /// ```
885    #[inline]
886    pub fn nanosecond(&self) -> i16 {
887        self.time().nanosecond()
888    }
889
890    /// Returns the fractional nanosecond for this `Zoned` value.
891    ///
892    /// If you want to set this value on `Zoned`, then use
893    /// [`ZonedWith::subsec_nanosecond`] via [`Zoned::with`].
894    ///
895    /// The value returned is guaranteed to be in the range `0..=999_999_999`.
896    ///
897    /// Note that this returns the fractional second associated with the civil
898    /// time on this `Zoned` value. This is distinct from the fractional
899    /// second on the underlying timestamp. A timestamp, for example, may be
900    /// negative to indicate time before the Unix epoch. But a civil datetime
901    /// can only have a negative year, while the remaining values are all
902    /// semantically positive. See the examples below for how this can manifest
903    /// in practice.
904    ///
905    /// # Example
906    ///
907    /// This shows the relationship between constructing a `Zoned` value
908    /// with routines like `with().millisecond()` and accessing the entire
909    /// fractional part as a nanosecond:
910    ///
911    /// ```
912    /// use jiff::civil::date;
913    ///
914    /// let zdt1 = date(2000, 1, 2)
915    ///     .at(3, 4, 5, 123_456_789)
916    ///     .in_tz("America/New_York")?;
917    /// assert_eq!(zdt1.subsec_nanosecond(), 123_456_789);
918    ///
919    /// let zdt2 = zdt1.with().millisecond(333).build()?;
920    /// assert_eq!(zdt2.subsec_nanosecond(), 333_456_789);
921    ///
922    /// # Ok::<(), Box<dyn std::error::Error>>(())
923    /// ```
924    ///
925    /// # Example: nanoseconds from a timestamp
926    ///
927    /// This shows how the fractional nanosecond part of a `Zoned` value
928    /// manifests from a specific timestamp.
929    ///
930    /// ```
931    /// use jiff::Timestamp;
932    ///
933    /// // 1,234 nanoseconds after the Unix epoch.
934    /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC")?;
935    /// assert_eq!(zdt.subsec_nanosecond(), 1_234);
936    /// // N.B. The timestamp's fractional second and the civil datetime's
937    /// // fractional second happen to be equal here:
938    /// assert_eq!(zdt.timestamp().subsec_nanosecond(), 1_234);
939    ///
940    /// # Ok::<(), Box<dyn std::error::Error>>(())
941    /// ```
942    ///
943    /// # Example: fractional seconds can differ between timestamps and civil time
944    ///
945    /// This shows how a timestamp can have a different fractional second
946    /// value than its corresponding `Zoned` value because of how the sign
947    /// is handled:
948    ///
949    /// ```
950    /// use jiff::{civil, Timestamp};
951    ///
952    /// // 1,234 nanoseconds before the Unix epoch.
953    /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC")?;
954    /// // The timestamp's fractional second is what was given:
955    /// assert_eq!(zdt.timestamp().subsec_nanosecond(), -1_234);
956    /// // But the civil datetime's fractional second is equal to
957    /// // `1_000_000_000 - 1_234`. This is because civil datetimes
958    /// // represent times in strictly positive values, like it
959    /// // would read on a clock.
960    /// assert_eq!(zdt.subsec_nanosecond(), 999998766);
961    /// // Looking at the other components of the time value might help.
962    /// assert_eq!(zdt.hour(), 23);
963    /// assert_eq!(zdt.minute(), 59);
964    /// assert_eq!(zdt.second(), 59);
965    ///
966    /// # Ok::<(), Box<dyn std::error::Error>>(())
967    /// ```
968    #[inline]
969    pub fn subsec_nanosecond(&self) -> i32 {
970        self.time().subsec_nanosecond()
971    }
972
973    /// Returns the weekday corresponding to this zoned datetime.
974    ///
975    /// # Example
976    ///
977    /// ```
978    /// use jiff::civil::{Weekday, date};
979    ///
980    /// // The Unix epoch was on a Thursday.
981    /// let zdt = date(1970, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
982    /// assert_eq!(zdt.weekday(), Weekday::Thursday);
983    /// // One can also get the weekday as an offset in a variety of schemes.
984    /// assert_eq!(zdt.weekday().to_monday_zero_offset(), 3);
985    /// assert_eq!(zdt.weekday().to_monday_one_offset(), 4);
986    /// assert_eq!(zdt.weekday().to_sunday_zero_offset(), 4);
987    /// assert_eq!(zdt.weekday().to_sunday_one_offset(), 5);
988    ///
989    /// # Ok::<(), Box<dyn std::error::Error>>(())
990    /// ```
991    #[inline]
992    pub fn weekday(&self) -> Weekday {
993        self.date().weekday()
994    }
995
996    /// Returns the ordinal day of the year that this zoned datetime resides
997    /// in.
998    ///
999    /// For leap years, this always returns a value in the range `1..=366`.
1000    /// Otherwise, the value is in the range `1..=365`.
1001    ///
1002    /// # Example
1003    ///
1004    /// ```
1005    /// use jiff::civil::date;
1006    ///
1007    /// let zdt = date(2006, 8, 24).at(7, 30, 0, 0).in_tz("America/New_York")?;
1008    /// assert_eq!(zdt.day_of_year(), 236);
1009    ///
1010    /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
1011    /// assert_eq!(zdt.day_of_year(), 365);
1012    ///
1013    /// let zdt = date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
1014    /// assert_eq!(zdt.day_of_year(), 366);
1015    ///
1016    /// # Ok::<(), Box<dyn std::error::Error>>(())
1017    /// ```
1018    #[inline]
1019    pub fn day_of_year(&self) -> i16 {
1020        self.date().day_of_year()
1021    }
1022
1023    /// Returns the ordinal day of the year that this zoned datetime resides
1024    /// in, but ignores leap years.
1025    ///
1026    /// That is, the range of possible values returned by this routine is
1027    /// `1..=365`, even if this date resides in a leap year. If this date is
1028    /// February 29, then this routine returns `None`.
1029    ///
1030    /// The value `365` always corresponds to the last day in the year,
1031    /// December 31, even for leap years.
1032    ///
1033    /// # Example
1034    ///
1035    /// ```
1036    /// use jiff::civil::date;
1037    ///
1038    /// let zdt = date(2006, 8, 24).at(7, 30, 0, 0).in_tz("America/New_York")?;
1039    /// assert_eq!(zdt.day_of_year_no_leap(), Some(236));
1040    ///
1041    /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
1042    /// assert_eq!(zdt.day_of_year_no_leap(), Some(365));
1043    ///
1044    /// let zdt = date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
1045    /// assert_eq!(zdt.day_of_year_no_leap(), Some(365));
1046    ///
1047    /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?;
1048    /// assert_eq!(zdt.day_of_year_no_leap(), None);
1049    ///
1050    /// # Ok::<(), Box<dyn std::error::Error>>(())
1051    /// ```
1052    #[inline]
1053    pub fn day_of_year_no_leap(&self) -> Option<i16> {
1054        self.date().day_of_year_no_leap()
1055    }
1056
1057    /// Returns the beginning of the day, corresponding to `00:00:00` civil
1058    /// time, that this datetime resides in.
1059    ///
1060    /// While in nearly all cases the time returned will be `00:00:00`, it is
1061    /// possible for the time to be different from midnight if there is a time
1062    /// zone transition at midnight.
1063    ///
1064    /// # Example
1065    ///
1066    /// ```
1067    /// use jiff::{civil::date, Zoned};
1068    ///
1069    /// let zdt = date(2015, 10, 18).at(12, 0, 0, 0).in_tz("America/New_York")?;
1070    /// assert_eq!(
1071    ///     zdt.start_of_day()?.to_string(),
1072    ///     "2015-10-18T00:00:00-04:00[America/New_York]",
1073    /// );
1074    ///
1075    /// # Ok::<(), Box<dyn std::error::Error>>(())
1076    /// ```
1077    ///
1078    /// # Example: start of day may not be midnight
1079    ///
1080    /// In some time zones, gap transitions may begin at midnight. This implies
1081    /// that `00:xx:yy` does not exist on a clock in that time zone for that
1082    /// day.
1083    ///
1084    /// ```
1085    /// use jiff::{civil::date, Zoned};
1086    ///
1087    /// let zdt = date(2015, 10, 18).at(12, 0, 0, 0).in_tz("America/Sao_Paulo")?;
1088    /// assert_eq!(
1089    ///     zdt.start_of_day()?.to_string(),
1090    ///     // not midnight!
1091    ///     "2015-10-18T01:00:00-02:00[America/Sao_Paulo]",
1092    /// );
1093    ///
1094    /// # Ok::<(), Box<dyn std::error::Error>>(())
1095    /// ```
1096    ///
1097    /// # Example: error because of overflow
1098    ///
1099    /// In some cases, it's possible for `Zoned` value to be able to represent
1100    /// an instant in time later in the day for a particular time zone, but not
1101    /// earlier in the day. This can only occur near the minimum datetime value
1102    /// supported by Jiff.
1103    ///
1104    /// ```
1105    /// use jiff::{civil::date, tz::{TimeZone, Offset}, Zoned};
1106    ///
1107    /// // While -9999-01-03T04:00:00+25:59:59 is representable as a Zoned
1108    /// // value, the start of the corresponding day is not!
1109    /// let tz = TimeZone::fixed(Offset::MAX);
1110    /// let zdt = date(-9999, 1, 3).at(4, 0, 0, 0).to_zoned(tz.clone())?;
1111    /// assert!(zdt.start_of_day().is_err());
1112    /// // The next day works fine since -9999-01-04T00:00:00+25:59:59 is
1113    /// // representable.
1114    /// let zdt = date(-9999, 1, 4).at(15, 0, 0, 0).to_zoned(tz)?;
1115    /// assert_eq!(
1116    ///     zdt.start_of_day()?.datetime(),
1117    ///     date(-9999, 1, 4).at(0, 0, 0, 0),
1118    /// );
1119    ///
1120    /// # Ok::<(), Box<dyn std::error::Error>>(())
1121    /// ```
1122    #[inline]
1123    pub fn start_of_day(&self) -> Result<Zoned, Error> {
1124        self.datetime().start_of_day().to_zoned(self.time_zone().clone())
1125    }
1126
1127    /// Returns the end of the day, corresponding to `23:59:59.999999999` civil
1128    /// time, that this datetime resides in.
1129    ///
1130    /// While in nearly all cases the time returned will be
1131    /// `23:59:59.999999999`, it is possible for the time to be different if
1132    /// there is a time zone transition covering that time.
1133    ///
1134    /// # Example
1135    ///
1136    /// ```
1137    /// use jiff::civil::date;
1138    ///
1139    /// let zdt = date(2024, 7, 3)
1140    ///     .at(7, 30, 10, 123_456_789)
1141    ///     .in_tz("America/New_York")?;
1142    /// assert_eq!(
1143    ///     zdt.end_of_day()?,
1144    ///     date(2024, 7, 3)
1145    ///         .at(23, 59, 59, 999_999_999)
1146    ///         .in_tz("America/New_York")?,
1147    /// );
1148    ///
1149    /// # Ok::<(), Box<dyn std::error::Error>>(())
1150    /// ```
1151    ///
1152    /// # Example: error because of overflow
1153    ///
1154    /// In some cases, it's possible for `Zoned` value to be able to represent
1155    /// an instant in time earlier in the day for a particular time zone, but
1156    /// not later in the day. This can only occur near the maximum datetime
1157    /// value supported by Jiff.
1158    ///
1159    /// ```
1160    /// use jiff::{civil::date, tz::{TimeZone, Offset}, Zoned};
1161    ///
1162    /// // While 9999-12-30T01:30-04 is representable as a Zoned
1163    /// // value, the start of the corresponding day is not!
1164    /// let tz = TimeZone::get("America/New_York")?;
1165    /// let zdt = date(9999, 12, 30).at(1, 30, 0, 0).to_zoned(tz.clone())?;
1166    /// assert!(zdt.end_of_day().is_err());
1167    /// // The previous day works fine since 9999-12-29T23:59:59.999999999-04
1168    /// // is representable.
1169    /// let zdt = date(9999, 12, 29).at(1, 30, 0, 0).to_zoned(tz.clone())?;
1170    /// assert_eq!(
1171    ///     zdt.end_of_day()?,
1172    ///     date(9999, 12, 29)
1173    ///         .at(23, 59, 59, 999_999_999)
1174    ///         .in_tz("America/New_York")?,
1175    /// );
1176    ///
1177    /// # Ok::<(), Box<dyn std::error::Error>>(())
1178    /// ```
1179    #[inline]
1180    pub fn end_of_day(&self) -> Result<Zoned, Error> {
1181        let end_of_civil_day = self.datetime().end_of_day();
1182        let ambts = self.time_zone().to_ambiguous_timestamp(end_of_civil_day);
1183        // I'm not sure if there are any real world cases where this matters,
1184        // but this is basically the reverse of `compatible`, so we write
1185        // it out ourselves. Basically, if the last civil datetime is in a
1186        // gap, then we want the earlier instant since the later instant must
1187        // necessarily be in the next day. And if the last civil datetime is
1188        // in a fold, then we want the later instant since both the earlier
1189        // and later instants are in the same calendar day and the later one
1190        // must be, well, later. In contrast, compatible mode takes the later
1191        // instant in a gap and the earlier instant in a fold. So we flip that
1192        // here.
1193        let offset = match ambts.offset() {
1194            AmbiguousOffset::Unambiguous { offset } => offset,
1195            AmbiguousOffset::Gap { after, .. } => after,
1196            AmbiguousOffset::Fold { after, .. } => after,
1197        };
1198        offset
1199            .to_timestamp(end_of_civil_day)
1200            .map(|ts| ts.to_zoned(self.time_zone().clone()))
1201    }
1202
1203    /// Returns the first date of the month that this zoned datetime resides
1204    /// in.
1205    ///
1206    /// In most cases, the time in the zoned datetime returned remains
1207    /// unchanged. In some cases, the time may change if the time
1208    /// on the previous date was unambiguous (always true, since a
1209    /// `Zoned` is a precise instant in time) and the same clock time
1210    /// on the returned zoned datetime is ambiguous. In this case, the
1211    /// [`Disambiguation::Compatible`]
1212    /// strategy will be used to turn it into a precise instant. If you want to
1213    /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1214    /// to get the civil datetime, then use [`DateTime::first_of_month`],
1215    /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1216    /// disambiguation strategy.
1217    ///
1218    /// # Example
1219    ///
1220    /// ```
1221    /// use jiff::civil::date;
1222    ///
1223    /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?;
1224    /// assert_eq!(
1225    ///     zdt.first_of_month()?,
1226    ///     date(2024, 2, 1).at(7, 30, 0, 0).in_tz("America/New_York")?,
1227    /// );
1228    ///
1229    /// # Ok::<(), Box<dyn std::error::Error>>(())
1230    /// ```
1231    #[inline]
1232    pub fn first_of_month(&self) -> Result<Zoned, Error> {
1233        self.datetime().first_of_month().to_zoned(self.time_zone().clone())
1234    }
1235
1236    /// Returns the last date of the month that this zoned datetime resides in.
1237    ///
1238    /// In most cases, the time in the zoned datetime returned remains
1239    /// unchanged. In some cases, the time may change if the time
1240    /// on the previous date was unambiguous (always true, since a
1241    /// `Zoned` is a precise instant in time) and the same clock time
1242    /// on the returned zoned datetime is ambiguous. In this case, the
1243    /// [`Disambiguation::Compatible`]
1244    /// strategy will be used to turn it into a precise instant. If you want to
1245    /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1246    /// to get the civil datetime, then use [`DateTime::last_of_month`],
1247    /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1248    /// disambiguation strategy.
1249    ///
1250    /// # Example
1251    ///
1252    /// ```
1253    /// use jiff::civil::date;
1254    ///
1255    /// let zdt = date(2024, 2, 5).at(7, 30, 0, 0).in_tz("America/New_York")?;
1256    /// assert_eq!(
1257    ///     zdt.last_of_month()?,
1258    ///     date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?,
1259    /// );
1260    ///
1261    /// # Ok::<(), Box<dyn std::error::Error>>(())
1262    /// ```
1263    #[inline]
1264    pub fn last_of_month(&self) -> Result<Zoned, Error> {
1265        self.datetime().last_of_month().to_zoned(self.time_zone().clone())
1266    }
1267
1268    /// Returns the ordinal number of the last day in the month in which this
1269    /// zoned datetime resides.
1270    ///
1271    /// This is phrased as "the ordinal number of the last day" instead of "the
1272    /// number of days" because some months may be missing days due to time
1273    /// zone transitions. However, this is extraordinarily rare.
1274    ///
1275    /// This is guaranteed to always return one of the following values,
1276    /// depending on the year and the month: 28, 29, 30 or 31.
1277    ///
1278    /// # Example
1279    ///
1280    /// ```
1281    /// use jiff::civil::date;
1282    ///
1283    /// let zdt = date(2024, 2, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1284    /// assert_eq!(zdt.days_in_month(), 29);
1285    ///
1286    /// let zdt = date(2023, 2, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1287    /// assert_eq!(zdt.days_in_month(), 28);
1288    ///
1289    /// let zdt = date(2024, 8, 15).at(7, 30, 0, 0).in_tz("America/New_York")?;
1290    /// assert_eq!(zdt.days_in_month(), 31);
1291    ///
1292    /// # Ok::<(), Box<dyn std::error::Error>>(())
1293    /// ```
1294    ///
1295    /// # Example: count of days in month
1296    ///
1297    /// In `Pacific/Apia`, December 2011 did not have a December 30. Instead,
1298    /// the calendar [skipped from December 29 right to December 31][samoa].
1299    ///
1300    /// If you really do need the count of days in a month in a time zone
1301    /// aware fashion, then it's possible to achieve through arithmetic:
1302    ///
1303    /// ```
1304    /// use jiff::{civil::date, RoundMode, ToSpan, Unit, ZonedDifference};
1305    ///
1306    /// let first_of_month = date(2011, 12, 1).in_tz("Pacific/Apia")?;
1307    /// assert_eq!(first_of_month.days_in_month(), 31);
1308    /// let one_month_later = first_of_month.checked_add(1.month())?;
1309    ///
1310    /// let options = ZonedDifference::new(&one_month_later)
1311    ///     .largest(Unit::Hour)
1312    ///     .smallest(Unit::Hour)
1313    ///     .mode(RoundMode::HalfExpand);
1314    /// let span = first_of_month.until(options)?;
1315    /// let days = ((span.get_hours() as f64) / 24.0).round() as i64;
1316    /// // Try the above in a different time zone, like America/New_York, and
1317    /// // you'll get 31 here.
1318    /// assert_eq!(days, 30);
1319    ///
1320    /// # Ok::<(), Box<dyn std::error::Error>>(())
1321    /// ```
1322    ///
1323    /// [samoa]: https://en.wikipedia.org/wiki/Time_in_Samoa#2011_time_zone_change
1324    #[inline]
1325    pub fn days_in_month(&self) -> i8 {
1326        self.date().days_in_month()
1327    }
1328
1329    /// Returns the first date of the year that this zoned datetime resides in.
1330    ///
1331    /// In most cases, the time in the zoned datetime returned remains
1332    /// unchanged. In some cases, the time may change if the time
1333    /// on the previous date was unambiguous (always true, since a
1334    /// `Zoned` is a precise instant in time) and the same clock time
1335    /// on the returned zoned datetime is ambiguous. In this case, the
1336    /// [`Disambiguation::Compatible`]
1337    /// strategy will be used to turn it into a precise instant. If you want to
1338    /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1339    /// to get the civil datetime, then use [`DateTime::first_of_year`],
1340    /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1341    /// disambiguation strategy.
1342    ///
1343    /// # Example
1344    ///
1345    /// ```
1346    /// use jiff::civil::date;
1347    ///
1348    /// let zdt = date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?;
1349    /// assert_eq!(
1350    ///     zdt.first_of_year()?,
1351    ///     date(2024, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York")?,
1352    /// );
1353    ///
1354    /// # Ok::<(), Box<dyn std::error::Error>>(())
1355    /// ```
1356    #[inline]
1357    pub fn first_of_year(&self) -> Result<Zoned, Error> {
1358        self.datetime().first_of_year().to_zoned(self.time_zone().clone())
1359    }
1360
1361    /// Returns the last date of the year that this zoned datetime resides in.
1362    ///
1363    /// In most cases, the time in the zoned datetime returned remains
1364    /// unchanged. In some cases, the time may change if the time
1365    /// on the previous date was unambiguous (always true, since a
1366    /// `Zoned` is a precise instant in time) and the same clock time
1367    /// on the returned zoned datetime is ambiguous. In this case, the
1368    /// [`Disambiguation::Compatible`]
1369    /// strategy will be used to turn it into a precise instant. If you want to
1370    /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1371    /// to get the civil datetime, then use [`DateTime::last_of_year`],
1372    /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1373    /// disambiguation strategy.
1374    ///
1375    /// # Example
1376    ///
1377    /// ```
1378    /// use jiff::civil::date;
1379    ///
1380    /// let zdt = date(2024, 2, 5).at(7, 30, 0, 0).in_tz("America/New_York")?;
1381    /// assert_eq!(
1382    ///     zdt.last_of_year()?,
1383    ///     date(2024, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?,
1384    /// );
1385    ///
1386    /// # Ok::<(), Box<dyn std::error::Error>>(())
1387    /// ```
1388    #[inline]
1389    pub fn last_of_year(&self) -> Result<Zoned, Error> {
1390        self.datetime().last_of_year().to_zoned(self.time_zone().clone())
1391    }
1392
1393    /// Returns the ordinal number of the last day in the year in which this
1394    /// zoned datetime resides.
1395    ///
1396    /// This is phrased as "the ordinal number of the last day" instead of "the
1397    /// number of days" because some years may be missing days due to time
1398    /// zone transitions. However, this is extraordinarily rare.
1399    ///
1400    /// This is guaranteed to always return either `365` or `366`.
1401    ///
1402    /// # Example
1403    ///
1404    /// ```
1405    /// use jiff::civil::date;
1406    ///
1407    /// let zdt = date(2024, 7, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1408    /// assert_eq!(zdt.days_in_year(), 366);
1409    ///
1410    /// let zdt = date(2023, 7, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1411    /// assert_eq!(zdt.days_in_year(), 365);
1412    ///
1413    /// # Ok::<(), Box<dyn std::error::Error>>(())
1414    /// ```
1415    #[inline]
1416    pub fn days_in_year(&self) -> i16 {
1417        self.date().days_in_year()
1418    }
1419
1420    /// Returns true if and only if the year in which this zoned datetime
1421    /// resides is a leap year.
1422    ///
1423    /// # Example
1424    ///
1425    /// ```
1426    /// use jiff::civil::date;
1427    ///
1428    /// let zdt = date(2024, 1, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
1429    /// assert!(zdt.in_leap_year());
1430    ///
1431    /// let zdt = date(2023, 12, 31).at(7, 30, 0, 0).in_tz("America/New_York")?;
1432    /// assert!(!zdt.in_leap_year());
1433    ///
1434    /// # Ok::<(), Box<dyn std::error::Error>>(())
1435    /// ```
1436    #[inline]
1437    pub fn in_leap_year(&self) -> bool {
1438        self.date().in_leap_year()
1439    }
1440
1441    /// Returns the zoned datetime with a date immediately following this one.
1442    ///
1443    /// In most cases, the time in the zoned datetime returned remains
1444    /// unchanged. In some cases, the time may change if the time
1445    /// on the previous date was unambiguous (always true, since a
1446    /// `Zoned` is a precise instant in time) and the same clock time
1447    /// on the returned zoned datetime is ambiguous. In this case, the
1448    /// [`Disambiguation::Compatible`]
1449    /// strategy will be used to turn it into a precise instant. If you want to
1450    /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1451    /// to get the civil datetime, then use [`DateTime::tomorrow`],
1452    /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1453    /// disambiguation strategy.
1454    ///
1455    /// # Errors
1456    ///
1457    /// This returns an error when one day following this zoned datetime would
1458    /// exceed the maximum `Zoned` value.
1459    ///
1460    /// # Example
1461    ///
1462    /// ```
1463    /// use jiff::{civil::date, Timestamp};
1464    ///
1465    /// let zdt = date(2024, 2, 28).at(7, 30, 0, 0).in_tz("America/New_York")?;
1466    /// assert_eq!(
1467    ///     zdt.tomorrow()?,
1468    ///     date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?,
1469    /// );
1470    ///
1471    /// // The max doesn't have a tomorrow.
1472    /// assert!(Timestamp::MAX.in_tz("America/New_York")?.tomorrow().is_err());
1473    ///
1474    /// # Ok::<(), Box<dyn std::error::Error>>(())
1475    /// ```
1476    ///
1477    /// # Example: ambiguous datetimes are automatically resolved
1478    ///
1479    /// ```
1480    /// use jiff::{civil::date, Timestamp};
1481    ///
1482    /// let zdt = date(2024, 3, 9).at(2, 30, 0, 0).in_tz("America/New_York")?;
1483    /// assert_eq!(
1484    ///     zdt.tomorrow()?,
1485    ///     date(2024, 3, 10).at(3, 30, 0, 0).in_tz("America/New_York")?,
1486    /// );
1487    ///
1488    /// # Ok::<(), Box<dyn std::error::Error>>(())
1489    /// ```
1490    #[inline]
1491    pub fn tomorrow(&self) -> Result<Zoned, Error> {
1492        self.datetime().tomorrow()?.to_zoned(self.time_zone().clone())
1493    }
1494
1495    /// Returns the zoned datetime with a date immediately preceding this one.
1496    ///
1497    /// In most cases, the time in the zoned datetime returned remains
1498    /// unchanged. In some cases, the time may change if the time
1499    /// on the previous date was unambiguous (always true, since a
1500    /// `Zoned` is a precise instant in time) and the same clock time
1501    /// on the returned zoned datetime is ambiguous. In this case, the
1502    /// [`Disambiguation::Compatible`]
1503    /// strategy will be used to turn it into a precise instant. If you want to
1504    /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1505    /// to get the civil datetime, then use [`DateTime::yesterday`],
1506    /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1507    /// disambiguation strategy.
1508    ///
1509    /// # Errors
1510    ///
1511    /// This returns an error when one day preceding this zoned datetime would
1512    /// be less than the minimum `Zoned` value.
1513    ///
1514    /// # Example
1515    ///
1516    /// ```
1517    /// use jiff::{civil::date, Timestamp};
1518    ///
1519    /// let zdt = date(2024, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
1520    /// assert_eq!(
1521    ///     zdt.yesterday()?,
1522    ///     date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?,
1523    /// );
1524    ///
1525    /// // The min doesn't have a yesterday.
1526    /// assert!(Timestamp::MIN.in_tz("America/New_York")?.yesterday().is_err());
1527    ///
1528    /// # Ok::<(), Box<dyn std::error::Error>>(())
1529    /// ```
1530    ///
1531    /// # Example: ambiguous datetimes are automatically resolved
1532    ///
1533    /// ```
1534    /// use jiff::{civil::date, Timestamp};
1535    ///
1536    /// let zdt = date(2024, 11, 4).at(1, 30, 0, 0).in_tz("America/New_York")?;
1537    /// assert_eq!(
1538    ///     zdt.yesterday()?.to_string(),
1539    ///     // Consistent with the "compatible" disambiguation strategy, the
1540    ///     // "first" 1 o'clock hour is selected. You can tell this because
1541    ///     // the offset is -04, which corresponds to DST time in New York.
1542    ///     // The second 1 o'clock hour would have offset -05.
1543    ///     "2024-11-03T01:30:00-04:00[America/New_York]",
1544    /// );
1545    ///
1546    /// # Ok::<(), Box<dyn std::error::Error>>(())
1547    /// ```
1548    #[inline]
1549    pub fn yesterday(&self) -> Result<Zoned, Error> {
1550        self.datetime().yesterday()?.to_zoned(self.time_zone().clone())
1551    }
1552
1553    /// Returns the "nth" weekday from the beginning or end of the month in
1554    /// which this zoned datetime resides.
1555    ///
1556    /// The `nth` parameter can be positive or negative. A positive value
1557    /// computes the "nth" weekday from the beginning of the month. A negative
1558    /// value computes the "nth" weekday from the end of the month. So for
1559    /// example, use `-1` to "find the last weekday" in this date's month.
1560    ///
1561    /// In most cases, the time in the zoned datetime returned remains
1562    /// unchanged. In some cases, the time may change if the time
1563    /// on the previous date was unambiguous (always true, since a
1564    /// `Zoned` is a precise instant in time) and the same clock time
1565    /// on the returned zoned datetime is ambiguous. In this case, the
1566    /// [`Disambiguation::Compatible`]
1567    /// strategy will be used to turn it into a precise instant. If you want to
1568    /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1569    /// to get the civil datetime, then use [`DateTime::nth_weekday_of_month`],
1570    /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1571    /// disambiguation strategy.
1572    ///
1573    /// # Errors
1574    ///
1575    /// This returns an error when `nth` is `0`, or if it is `5` or `-5` and
1576    /// there is no 5th weekday from the beginning or end of the month. This
1577    /// could also return an error if the corresponding datetime could not be
1578    /// represented as an instant for this `Zoned`'s time zone. (This can only
1579    /// happen close the boundaries of an [`Timestamp`].)
1580    ///
1581    /// # Example
1582    ///
1583    /// This shows how to get the nth weekday in a month, starting from the
1584    /// beginning of the month:
1585    ///
1586    /// ```
1587    /// use jiff::civil::{Weekday, date};
1588    ///
1589    /// let zdt = date(2017, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
1590    /// let second_friday = zdt.nth_weekday_of_month(2, Weekday::Friday)?;
1591    /// assert_eq!(
1592    ///     second_friday,
1593    ///     date(2017, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York")?,
1594    /// );
1595    ///
1596    /// # Ok::<(), Box<dyn std::error::Error>>(())
1597    /// ```
1598    ///
1599    /// This shows how to do the reverse of the above. That is, the nth _last_
1600    /// weekday in a month:
1601    ///
1602    /// ```
1603    /// use jiff::civil::{Weekday, date};
1604    ///
1605    /// let zdt = date(2024, 3, 1).at(7, 30, 0, 0).in_tz("America/New_York")?;
1606    /// let last_thursday = zdt.nth_weekday_of_month(-1, Weekday::Thursday)?;
1607    /// assert_eq!(
1608    ///     last_thursday,
1609    ///     date(2024, 3, 28).at(7, 30, 0, 0).in_tz("America/New_York")?,
1610    /// );
1611    ///
1612    /// let second_last_thursday = zdt.nth_weekday_of_month(
1613    ///     -2,
1614    ///     Weekday::Thursday,
1615    /// )?;
1616    /// assert_eq!(
1617    ///     second_last_thursday,
1618    ///     date(2024, 3, 21).at(7, 30, 0, 0).in_tz("America/New_York")?,
1619    /// );
1620    ///
1621    /// # Ok::<(), Box<dyn std::error::Error>>(())
1622    /// ```
1623    ///
1624    /// This routine can return an error if there isn't an `nth` weekday
1625    /// for this month. For example, March 2024 only has 4 Mondays:
1626    ///
1627    /// ```
1628    /// use jiff::civil::{Weekday, date};
1629    ///
1630    /// let zdt = date(2024, 3, 25).at(7, 30, 0, 0).in_tz("America/New_York")?;
1631    /// let fourth_monday = zdt.nth_weekday_of_month(4, Weekday::Monday)?;
1632    /// assert_eq!(
1633    ///     fourth_monday,
1634    ///     date(2024, 3, 25).at(7, 30, 0, 0).in_tz("America/New_York")?,
1635    /// );
1636    /// // There is no 5th Monday.
1637    /// assert!(zdt.nth_weekday_of_month(5, Weekday::Monday).is_err());
1638    /// // Same goes for counting backwards.
1639    /// assert!(zdt.nth_weekday_of_month(-5, Weekday::Monday).is_err());
1640    ///
1641    /// # Ok::<(), Box<dyn std::error::Error>>(())
1642    /// ```
1643    #[inline]
1644    pub fn nth_weekday_of_month(
1645        &self,
1646        nth: i8,
1647        weekday: Weekday,
1648    ) -> Result<Zoned, Error> {
1649        self.datetime()
1650            .nth_weekday_of_month(nth, weekday)?
1651            .to_zoned(self.time_zone().clone())
1652    }
1653
1654    /// Returns the "nth" weekday from this zoned datetime, not including
1655    /// itself.
1656    ///
1657    /// The `nth` parameter can be positive or negative. A positive value
1658    /// computes the "nth" weekday starting at the day after this date and
1659    /// going forwards in time. A negative value computes the "nth" weekday
1660    /// starting at the day before this date and going backwards in time.
1661    ///
1662    /// For example, if this zoned datetime's weekday is a Sunday and the first
1663    /// Sunday is asked for (that is, `zdt.nth_weekday(1, Weekday::Sunday)`),
1664    /// then the result is a week from this zoned datetime corresponding to the
1665    /// following Sunday.
1666    ///
1667    /// In most cases, the time in the zoned datetime returned remains
1668    /// unchanged. In some cases, the time may change if the time
1669    /// on the previous date was unambiguous (always true, since a
1670    /// `Zoned` is a precise instant in time) and the same clock time
1671    /// on the returned zoned datetime is ambiguous. In this case, the
1672    /// [`Disambiguation::Compatible`]
1673    /// strategy will be used to turn it into a precise instant. If you want to
1674    /// use a different disambiguation strategy, then use [`Zoned::datetime`]
1675    /// to get the civil datetime, then use [`DateTime::nth_weekday`],
1676    /// then use [`TimeZone::to_ambiguous_zoned`] and apply your preferred
1677    /// disambiguation strategy.
1678    ///
1679    /// # Errors
1680    ///
1681    /// This returns an error when `nth` is `0`, or if it would otherwise
1682    /// result in a date that overflows the minimum/maximum values of
1683    /// `Zoned`.
1684    ///
1685    /// # Example
1686    ///
1687    /// This example shows how to find the "nth" weekday going forwards in
1688    /// time:
1689    ///
1690    /// ```
1691    /// use jiff::civil::{Weekday, date};
1692    ///
1693    /// // Use a Sunday in March as our start date.
1694    /// let zdt = date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1695    /// assert_eq!(zdt.weekday(), Weekday::Sunday);
1696    ///
1697    /// // The first next Monday is tomorrow!
1698    /// let next_monday = zdt.nth_weekday(1, Weekday::Monday)?;
1699    /// assert_eq!(
1700    ///     next_monday,
1701    ///     date(2024, 3, 11).at(7, 30, 0, 0).in_tz("America/New_York")?,
1702    /// );
1703    ///
1704    /// // But the next Sunday is a week away, because this doesn't
1705    /// // include the current weekday.
1706    /// let next_sunday = zdt.nth_weekday(1, Weekday::Sunday)?;
1707    /// assert_eq!(
1708    ///     next_sunday,
1709    ///     date(2024, 3, 17).at(7, 30, 0, 0).in_tz("America/New_York")?,
1710    /// );
1711    ///
1712    /// // "not this Thursday, but next Thursday"
1713    /// let next_next_thursday = zdt.nth_weekday(2, Weekday::Thursday)?;
1714    /// assert_eq!(
1715    ///     next_next_thursday,
1716    ///     date(2024, 3, 21).at(7, 30, 0, 0).in_tz("America/New_York")?,
1717    /// );
1718    ///
1719    /// # Ok::<(), Box<dyn std::error::Error>>(())
1720    /// ```
1721    ///
1722    /// This example shows how to find the "nth" weekday going backwards in
1723    /// time:
1724    ///
1725    /// ```
1726    /// use jiff::civil::{Weekday, date};
1727    ///
1728    /// // Use a Sunday in March as our start date.
1729    /// let zdt = date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York")?;
1730    /// assert_eq!(zdt.weekday(), Weekday::Sunday);
1731    ///
1732    /// // "last Saturday" was yesterday!
1733    /// let last_saturday = zdt.nth_weekday(-1, Weekday::Saturday)?;
1734    /// assert_eq!(
1735    ///     last_saturday,
1736    ///     date(2024, 3, 9).at(7, 30, 0, 0).in_tz("America/New_York")?,
1737    /// );
1738    ///
1739    /// // "last Sunday" was a week ago.
1740    /// let last_sunday = zdt.nth_weekday(-1, Weekday::Sunday)?;
1741    /// assert_eq!(
1742    ///     last_sunday,
1743    ///     date(2024, 3, 3).at(7, 30, 0, 0).in_tz("America/New_York")?,
1744    /// );
1745    ///
1746    /// // "not last Thursday, but the one before"
1747    /// let prev_prev_thursday = zdt.nth_weekday(-2, Weekday::Thursday)?;
1748    /// assert_eq!(
1749    ///     prev_prev_thursday,
1750    ///     date(2024, 2, 29).at(7, 30, 0, 0).in_tz("America/New_York")?,
1751    /// );
1752    ///
1753    /// # Ok::<(), Box<dyn std::error::Error>>(())
1754    /// ```
1755    ///
1756    /// This example shows that overflow results in an error in either
1757    /// direction:
1758    ///
1759    /// ```
1760    /// use jiff::{civil::Weekday, Timestamp};
1761    ///
1762    /// let zdt = Timestamp::MAX.in_tz("America/New_York")?;
1763    /// assert_eq!(zdt.weekday(), Weekday::Thursday);
1764    /// assert!(zdt.nth_weekday(1, Weekday::Saturday).is_err());
1765    ///
1766    /// let zdt = Timestamp::MIN.in_tz("America/New_York")?;
1767    /// assert_eq!(zdt.weekday(), Weekday::Monday);
1768    /// assert!(zdt.nth_weekday(-1, Weekday::Sunday).is_err());
1769    ///
1770    /// # Ok::<(), Box<dyn std::error::Error>>(())
1771    /// ```
1772    ///
1773    /// # Example: getting the start of the week
1774    ///
1775    /// Given a date, one can use `nth_weekday` to determine the start of the
1776    /// week in which the date resides in. This might vary based on whether
1777    /// the weeks start on Sunday or Monday. This example shows how to handle
1778    /// both.
1779    ///
1780    /// ```
1781    /// use jiff::civil::{Weekday, date};
1782    ///
1783    /// let zdt = date(2024, 3, 15).at(7, 30, 0, 0).in_tz("America/New_York")?;
1784    /// // For weeks starting with Sunday.
1785    /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?;
1786    /// assert_eq!(
1787    ///     start_of_week,
1788    ///     date(2024, 3, 10).at(7, 30, 0, 0).in_tz("America/New_York")?,
1789    /// );
1790    /// // For weeks starting with Monday.
1791    /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Monday)?;
1792    /// assert_eq!(
1793    ///     start_of_week,
1794    ///     date(2024, 3, 11).at(7, 30, 0, 0).in_tz("America/New_York")?,
1795    /// );
1796    ///
1797    /// # Ok::<(), Box<dyn std::error::Error>>(())
1798    /// ```
1799    ///
1800    /// In the above example, we first get the date after the current one
1801    /// because `nth_weekday` does not consider itself when counting. This
1802    /// works as expected even at the boundaries of a week:
1803    ///
1804    /// ```
1805    /// use jiff::civil::{Time, Weekday, date};
1806    ///
1807    /// // The start of the week.
1808    /// let zdt = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York")?;
1809    /// let start_of_week = zdt.tomorrow()?.nth_weekday(-1, Weekday::Sunday)?;
1810    /// assert_eq!(
1811    ///     start_of_week,
1812    ///     date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York")?,
1813    /// );
1814    /// // The end of the week.
1815    /// let zdt = date(2024, 3, 16)
1816    ///     .at(23, 59, 59, 999_999_999)
1817    ///     .in_tz("America/New_York")?;
1818    /// let start_of_week = zdt
1819    ///     .tomorrow()?
1820    ///     .nth_weekday(-1, Weekday::Sunday)?
1821    ///     .with().time(Time::midnight()).build()?;
1822    /// assert_eq!(
1823    ///     start_of_week,
1824    ///     date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York")?,
1825    /// );
1826    ///
1827    /// # Ok::<(), Box<dyn std::error::Error>>(())
1828    /// ```
1829    #[inline]
1830    pub fn nth_weekday(
1831        &self,
1832        nth: i32,
1833        weekday: Weekday,
1834    ) -> Result<Zoned, Error> {
1835        self.datetime()
1836            .nth_weekday(nth, weekday)?
1837            .to_zoned(self.time_zone().clone())
1838    }
1839
1840    /// Returns the precise instant in time referred to by this zoned datetime.
1841    ///
1842    /// # Example
1843    ///
1844    /// ```
1845    /// use jiff::civil::date;
1846    ///
1847    /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1848    /// assert_eq!(zdt.timestamp().as_second(), 1_710_456_300);
1849    ///
1850    /// # Ok::<(), Box<dyn std::error::Error>>(())
1851    /// ```
1852    #[inline]
1853    pub fn timestamp(&self) -> Timestamp {
1854        self.inner.timestamp
1855    }
1856
1857    /// Returns the civil datetime component of this zoned datetime.
1858    ///
1859    /// # Example
1860    ///
1861    /// ```
1862    /// use jiff::civil::date;
1863    ///
1864    /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1865    /// assert_eq!(zdt.datetime(), date(2024, 3, 14).at(18, 45, 0, 0));
1866    ///
1867    /// # Ok::<(), Box<dyn std::error::Error>>(())
1868    /// ```
1869    #[inline]
1870    pub fn datetime(&self) -> DateTime {
1871        self.inner.datetime
1872    }
1873
1874    /// Returns the civil date component of this zoned datetime.
1875    ///
1876    /// # Example
1877    ///
1878    /// ```
1879    /// use jiff::civil::date;
1880    ///
1881    /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1882    /// assert_eq!(zdt.date(), date(2024, 3, 14));
1883    ///
1884    /// # Ok::<(), Box<dyn std::error::Error>>(())
1885    /// ```
1886    #[inline]
1887    pub fn date(&self) -> Date {
1888        self.datetime().date()
1889    }
1890
1891    /// Returns the civil time component of this zoned datetime.
1892    ///
1893    /// # Example
1894    ///
1895    /// ```
1896    /// use jiff::civil::{date, time};
1897    ///
1898    /// let zdt = date(2024, 3, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1899    /// assert_eq!(zdt.time(), time(18, 45, 0, 0));
1900    ///
1901    /// # Ok::<(), Box<dyn std::error::Error>>(())
1902    /// ```
1903    #[inline]
1904    pub fn time(&self) -> Time {
1905        self.datetime().time()
1906    }
1907
1908    /// Construct a civil [ISO 8601 week date] from this zoned datetime.
1909    ///
1910    /// The [`ISOWeekDate`] type describes itself in more detail, but in
1911    /// brief, the ISO week date calendar system eschews months in favor of
1912    /// weeks.
1913    ///
1914    /// This routine is equivalent to
1915    /// [`ISOWeekDate::from_date(zdt.date())`](ISOWeekDate::from_date).
1916    ///
1917    /// [ISO 8601 week date]: https://en.wikipedia.org/wiki/ISO_week_date
1918    ///
1919    /// # Example
1920    ///
1921    /// This shows a number of examples demonstrating the conversion from a
1922    /// Gregorian date to an ISO 8601 week date:
1923    ///
1924    /// ```
1925    /// use jiff::civil::{Date, Time, Weekday, date};
1926    ///
1927    /// let zdt = date(1995, 1, 1).at(18, 45, 0, 0).in_tz("US/Eastern")?;
1928    /// let weekdate = zdt.iso_week_date();
1929    /// assert_eq!(weekdate.year(), 1994);
1930    /// assert_eq!(weekdate.week(), 52);
1931    /// assert_eq!(weekdate.weekday(), Weekday::Sunday);
1932    ///
1933    /// let zdt = date(1996, 12, 31).at(18, 45, 0, 0).in_tz("US/Eastern")?;
1934    /// let weekdate = zdt.iso_week_date();
1935    /// assert_eq!(weekdate.year(), 1997);
1936    /// assert_eq!(weekdate.week(), 1);
1937    /// assert_eq!(weekdate.weekday(), Weekday::Tuesday);
1938    ///
1939    /// let zdt = date(2019, 12, 30).at(18, 45, 0, 0).in_tz("US/Eastern")?;
1940    /// let weekdate = zdt.iso_week_date();
1941    /// assert_eq!(weekdate.year(), 2020);
1942    /// assert_eq!(weekdate.week(), 1);
1943    /// assert_eq!(weekdate.weekday(), Weekday::Monday);
1944    ///
1945    /// let zdt = date(2024, 3, 9).at(18, 45, 0, 0).in_tz("US/Eastern")?;
1946    /// let weekdate = zdt.iso_week_date();
1947    /// assert_eq!(weekdate.year(), 2024);
1948    /// assert_eq!(weekdate.week(), 10);
1949    /// assert_eq!(weekdate.weekday(), Weekday::Saturday);
1950    ///
1951    /// # Ok::<(), Box<dyn std::error::Error>>(())
1952    /// ```
1953    #[inline]
1954    pub fn iso_week_date(self) -> ISOWeekDate {
1955        self.date().iso_week_date()
1956    }
1957
1958    /// Returns the time zone offset of this zoned datetime.
1959    ///
1960    /// # Example
1961    ///
1962    /// ```
1963    /// use jiff::civil::date;
1964    ///
1965    /// let zdt = date(2024, 2, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1966    /// // -05 because New York is in "standard" time at this point.
1967    /// assert_eq!(zdt.offset(), jiff::tz::offset(-5));
1968    ///
1969    /// let zdt = date(2024, 7, 14).at(18, 45, 0, 0).in_tz("America/New_York")?;
1970    /// // But we get -04 once "summer" or "daylight saving time" starts.
1971    /// assert_eq!(zdt.offset(), jiff::tz::offset(-4));
1972    ///
1973    /// # Ok::<(), Box<dyn std::error::Error>>(())
1974    /// ```
1975    #[inline]
1976    pub fn offset(&self) -> Offset {
1977        self.inner.offset
1978    }
1979
1980    /// Add the given span of time to this zoned datetime. If the sum would
1981    /// overflow the minimum or maximum zoned datetime values, then an error is
1982    /// returned.
1983    ///
1984    /// This operation accepts three different duration types: [`Span`],
1985    /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
1986    /// `From` trait implementations for the [`ZonedArithmetic`] type.
1987    ///
1988    /// # Properties
1989    ///
1990    /// This routine is _not_ reversible because some additions may
1991    /// be ambiguous. For example, adding `1 month` to the zoned
1992    /// datetime `2024-03-31T00:00:00[America/New_York]` will produce
1993    /// `2024-04-30T00:00:00[America/New_York]` since April has
1994    /// only 30 days in a month. Moreover, subtracting `1 month`
1995    /// from `2024-04-30T00:00:00[America/New_York]` will produce
1996    /// `2024-03-30T00:00:00[America/New_York]`, which is not the date we
1997    /// started with.
1998    ///
1999    /// A similar argument applies for days, since with zoned datetimes,
2000    /// different days can be different lengths.
2001    ///
2002    /// If spans of time are limited to units of hours (or less), then this
2003    /// routine _is_ reversible. This also implies that all operations with a
2004    /// [`SignedDuration`] or a [`std::time::Duration`] are reversible.
2005    ///
2006    /// # Errors
2007    ///
2008    /// If the span added to this zoned datetime would result in a zoned
2009    /// datetime that exceeds the range of a `Zoned`, then this will return an
2010    /// error.
2011    ///
2012    /// # Example
2013    ///
2014    /// This shows a few examples of adding spans of time to various zoned
2015    /// datetimes. We make use of the [`ToSpan`](crate::ToSpan) trait for
2016    /// convenient creation of spans.
2017    ///
2018    /// ```
2019    /// use jiff::{civil::date, ToSpan};
2020    ///
2021    /// let zdt = date(1995, 12, 7)
2022    ///     .at(3, 24, 30, 3_500)
2023    ///     .in_tz("America/New_York")?;
2024    /// let got = zdt.checked_add(20.years().months(4).nanoseconds(500))?;
2025    /// assert_eq!(
2026    ///     got,
2027    ///     date(2016, 4, 7).at(3, 24, 30, 4_000).in_tz("America/New_York")?,
2028    /// );
2029    ///
2030    /// let zdt = date(2019, 1, 31).at(15, 30, 0, 0).in_tz("America/New_York")?;
2031    /// let got = zdt.checked_add(1.months())?;
2032    /// assert_eq!(
2033    ///     got,
2034    ///     date(2019, 2, 28).at(15, 30, 0, 0).in_tz("America/New_York")?,
2035    /// );
2036    ///
2037    /// # Ok::<(), Box<dyn std::error::Error>>(())
2038    /// ```
2039    ///
2040    /// # Example: available via addition operator
2041    ///
2042    /// This routine can be used via the `+` operator. Note though that if it
2043    /// fails, it will result in a panic. Note that we use `&zdt + ...` instead
2044    /// of `zdt + ...` since `Add` is implemented for `&Zoned` and not `Zoned`.
2045    /// This is because `Zoned` is not `Copy`.
2046    ///
2047    /// ```
2048    /// use jiff::{civil::date, ToSpan};
2049    ///
2050    /// let zdt = date(1995, 12, 7)
2051    ///     .at(3, 24, 30, 3_500)
2052    ///     .in_tz("America/New_York")?;
2053    /// let got = &zdt + 20.years().months(4).nanoseconds(500);
2054    /// assert_eq!(
2055    ///     got,
2056    ///     date(2016, 4, 7).at(3, 24, 30, 4_000).in_tz("America/New_York")?,
2057    /// );
2058    ///
2059    /// # Ok::<(), Box<dyn std::error::Error>>(())
2060    /// ```
2061    ///
2062    /// # Example: zone aware arithmetic
2063    ///
2064    /// This example demonstrates the difference between "add 1 day" and
2065    /// "add 24 hours." In the former case, 1 day might not correspond to 24
2066    /// hours if there is a time zone transition in the intervening period.
2067    /// However, adding 24 hours always means adding exactly 24 hours.
2068    ///
2069    /// ```
2070    /// use jiff::{civil::date, ToSpan};
2071    ///
2072    /// let zdt = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("America/New_York")?;
2073    ///
2074    /// let one_day_later = zdt.checked_add(1.day())?;
2075    /// assert_eq!(
2076    ///     one_day_later.to_string(),
2077    ///     "2024-03-11T00:00:00-04:00[America/New_York]",
2078    /// );
2079    ///
2080    /// let twenty_four_hours_later = zdt.checked_add(24.hours())?;
2081    /// assert_eq!(
2082    ///     twenty_four_hours_later.to_string(),
2083    ///     "2024-03-11T01:00:00-04:00[America/New_York]",
2084    /// );
2085    ///
2086    /// # Ok::<(), Box<dyn std::error::Error>>(())
2087    /// ```
2088    ///
2089    /// # Example: automatic disambiguation
2090    ///
2091    /// This example demonstrates what happens when adding a span
2092    /// of time results in an ambiguous zoned datetime. Zone aware
2093    /// arithmetic uses automatic disambiguation corresponding to the
2094    /// [`Disambiguation::Compatible`]
2095    /// strategy for resolving an ambiguous datetime to a precise instant.
2096    /// For example, in the case below, there is a gap in the clocks for 1
2097    /// hour starting at `2024-03-10 02:00:00` in `America/New_York`. The
2098    /// "compatible" strategy chooses the later time in a gap:.
2099    ///
2100    /// ```
2101    /// use jiff::{civil::date, ToSpan};
2102    ///
2103    /// let zdt = date(2024, 3, 9).at(2, 30, 0, 0).in_tz("America/New_York")?;
2104    /// let one_day_later = zdt.checked_add(1.day())?;
2105    /// assert_eq!(
2106    ///     one_day_later.to_string(),
2107    ///     "2024-03-10T03:30:00-04:00[America/New_York]",
2108    /// );
2109    ///
2110    /// # Ok::<(), Box<dyn std::error::Error>>(())
2111    /// ```
2112    ///
2113    /// And this example demonstrates the "compatible" strategy when arithmetic
2114    /// results in an ambiguous datetime in a fold. In this case, we make use
2115    /// of the fact that the 1 o'clock hour was repeated on `2024-11-03`.
2116    ///
2117    /// ```
2118    /// use jiff::{civil::date, ToSpan};
2119    ///
2120    /// let zdt = date(2024, 11, 2).at(1, 30, 0, 0).in_tz("America/New_York")?;
2121    /// let one_day_later = zdt.checked_add(1.day())?;
2122    /// assert_eq!(
2123    ///     one_day_later.to_string(),
2124    ///     // This corresponds to the first iteration of the 1 o'clock hour,
2125    ///     // i.e., when DST is still in effect. It's the earlier time.
2126    ///     "2024-11-03T01:30:00-04:00[America/New_York]",
2127    /// );
2128    ///
2129    /// # Ok::<(), Box<dyn std::error::Error>>(())
2130    /// ```
2131    ///
2132    /// # Example: negative spans are supported
2133    ///
2134    /// ```
2135    /// use jiff::{civil::date, ToSpan};
2136    ///
2137    /// let zdt = date(2024, 3, 31)
2138    ///     .at(19, 5, 59, 999_999_999)
2139    ///     .in_tz("America/New_York")?;
2140    /// assert_eq!(
2141    ///     zdt.checked_add(-1.months())?,
2142    ///     date(2024, 2, 29).
2143    ///         at(19, 5, 59, 999_999_999)
2144    ///         .in_tz("America/New_York")?,
2145    /// );
2146    ///
2147    /// # Ok::<(), Box<dyn std::error::Error>>(())
2148    /// ```
2149    ///
2150    /// # Example: error on overflow
2151    ///
2152    /// ```
2153    /// use jiff::{civil::date, ToSpan};
2154    ///
2155    /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York")?;
2156    /// assert!(zdt.checked_add(9000.years()).is_err());
2157    /// assert!(zdt.checked_add(-19000.years()).is_err());
2158    ///
2159    /// # Ok::<(), Box<dyn std::error::Error>>(())
2160    /// ```
2161    ///
2162    /// # Example: adding absolute durations
2163    ///
2164    /// This shows how to add signed and unsigned absolute durations to a
2165    /// `Zoned`.
2166    ///
2167    /// ```
2168    /// use std::time::Duration;
2169    ///
2170    /// use jiff::{civil::date, SignedDuration};
2171    ///
2172    /// let zdt = date(2024, 2, 29).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2173    ///
2174    /// let dur = SignedDuration::from_hours(25);
2175    /// assert_eq!(
2176    ///     zdt.checked_add(dur)?,
2177    ///     date(2024, 3, 1).at(1, 0, 0, 0).in_tz("US/Eastern")?,
2178    /// );
2179    /// assert_eq!(
2180    ///     zdt.checked_add(-dur)?,
2181    ///     date(2024, 2, 27).at(23, 0, 0, 0).in_tz("US/Eastern")?,
2182    /// );
2183    ///
2184    /// let dur = Duration::from_secs(25 * 60 * 60);
2185    /// assert_eq!(
2186    ///     zdt.checked_add(dur)?,
2187    ///     date(2024, 3, 1).at(1, 0, 0, 0).in_tz("US/Eastern")?,
2188    /// );
2189    /// // One cannot negate an unsigned duration,
2190    /// // but you can subtract it!
2191    /// assert_eq!(
2192    ///     zdt.checked_sub(dur)?,
2193    ///     date(2024, 2, 27).at(23, 0, 0, 0).in_tz("US/Eastern")?,
2194    /// );
2195    ///
2196    /// # Ok::<(), Box<dyn std::error::Error>>(())
2197    /// ```
2198    #[inline]
2199    pub fn checked_add<A: Into<ZonedArithmetic>>(
2200        &self,
2201        duration: A,
2202    ) -> Result<Zoned, Error> {
2203        let duration: ZonedArithmetic = duration.into();
2204        duration.checked_add(self)
2205    }
2206
2207    #[inline]
2208    fn checked_add_span(&self, span: Span) -> Result<Zoned, Error> {
2209        let span_calendar = span.only_calendar();
2210        // If our duration only consists of "time" (hours, minutes, etc), then
2211        // we can short-circuit and do timestamp math. This also avoids dealing
2212        // with ambiguity and time zone bullshit.
2213        if span_calendar.is_zero() {
2214            return self
2215                .timestamp()
2216                .checked_add(span)
2217                .map(|ts| ts.to_zoned(self.time_zone().clone()))
2218                .with_context(|| {
2219                    err!(
2220                        "failed to add span {span} to timestamp {timestamp} \
2221                         from zoned datetime {zoned}",
2222                        timestamp = self.timestamp(),
2223                        zoned = self,
2224                    )
2225                });
2226        }
2227        let span_time = span.only_time();
2228        let dt =
2229            self.datetime().checked_add(span_calendar).with_context(|| {
2230                err!(
2231                    "failed to add span {span_calendar} to datetime {dt} \
2232                     from zoned datetime {zoned}",
2233                    dt = self.datetime(),
2234                    zoned = self,
2235                )
2236            })?;
2237
2238        let tz = self.time_zone();
2239        let mut ts =
2240            tz.to_ambiguous_timestamp(dt).compatible().with_context(|| {
2241                err!(
2242                    "failed to convert civil datetime {dt} to timestamp \
2243                     with time zone {tz}",
2244                    tz = self.time_zone().diagnostic_name(),
2245                )
2246            })?;
2247        ts = ts.checked_add(span_time).with_context(|| {
2248            err!(
2249                "failed to add span {span_time} to timestamp {ts} \
2250                 (which was created from {dt})"
2251            )
2252        })?;
2253        Ok(ts.to_zoned(tz.clone()))
2254    }
2255
2256    #[inline]
2257    fn checked_add_duration(
2258        &self,
2259        duration: SignedDuration,
2260    ) -> Result<Zoned, Error> {
2261        self.timestamp()
2262            .checked_add(duration)
2263            .map(|ts| ts.to_zoned(self.time_zone().clone()))
2264    }
2265
2266    /// This routine is identical to [`Zoned::checked_add`] with the
2267    /// duration negated.
2268    ///
2269    /// # Errors
2270    ///
2271    /// This has the same error conditions as [`Zoned::checked_add`].
2272    ///
2273    /// # Example
2274    ///
2275    /// This routine can be used via the `-` operator. Note though that if it
2276    /// fails, it will result in a panic. Note that we use `&zdt - ...` instead
2277    /// of `zdt - ...` since `Sub` is implemented for `&Zoned` and not `Zoned`.
2278    /// This is because `Zoned` is not `Copy`.
2279    ///
2280    /// ```
2281    /// use std::time::Duration;
2282    ///
2283    /// use jiff::{civil::date, SignedDuration, ToSpan};
2284    ///
2285    /// let zdt = date(1995, 12, 7)
2286    ///     .at(3, 24, 30, 3_500)
2287    ///     .in_tz("America/New_York")?;
2288    /// let got = &zdt - 20.years().months(4).nanoseconds(500);
2289    /// assert_eq!(
2290    ///     got,
2291    ///     date(1975, 8, 7).at(3, 24, 30, 3_000).in_tz("America/New_York")?,
2292    /// );
2293    ///
2294    /// let dur = SignedDuration::new(24 * 60 * 60, 500);
2295    /// assert_eq!(
2296    ///     &zdt - dur,
2297    ///     date(1995, 12, 6).at(3, 24, 30, 3_000).in_tz("America/New_York")?,
2298    /// );
2299    ///
2300    /// let dur = Duration::new(24 * 60 * 60, 500);
2301    /// assert_eq!(
2302    ///     &zdt - dur,
2303    ///     date(1995, 12, 6).at(3, 24, 30, 3_000).in_tz("America/New_York")?,
2304    /// );
2305    ///
2306    /// # Ok::<(), Box<dyn std::error::Error>>(())
2307    /// ```
2308    #[inline]
2309    pub fn checked_sub<A: Into<ZonedArithmetic>>(
2310        &self,
2311        duration: A,
2312    ) -> Result<Zoned, Error> {
2313        let duration: ZonedArithmetic = duration.into();
2314        duration.checked_neg().and_then(|za| za.checked_add(self))
2315    }
2316
2317    /// This routine is identical to [`Zoned::checked_add`], except the
2318    /// result saturates on overflow. That is, instead of overflow, either
2319    /// [`Timestamp::MIN`] or [`Timestamp::MAX`] (in this `Zoned` value's time
2320    /// zone) is returned.
2321    ///
2322    /// # Properties
2323    ///
2324    /// The properties of this routine are identical to [`Zoned::checked_add`],
2325    /// except that if saturation occurs, then the result is not reversible.
2326    ///
2327    /// # Example
2328    ///
2329    /// ```
2330    /// use jiff::{civil::date, SignedDuration, Timestamp, ToSpan};
2331    ///
2332    /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York")?;
2333    /// assert_eq!(Timestamp::MAX, zdt.saturating_add(9000.years()).timestamp());
2334    /// assert_eq!(Timestamp::MIN, zdt.saturating_add(-19000.years()).timestamp());
2335    /// assert_eq!(Timestamp::MAX, zdt.saturating_add(SignedDuration::MAX).timestamp());
2336    /// assert_eq!(Timestamp::MIN, zdt.saturating_add(SignedDuration::MIN).timestamp());
2337    /// assert_eq!(Timestamp::MAX, zdt.saturating_add(std::time::Duration::MAX).timestamp());
2338    ///
2339    /// # Ok::<(), Box<dyn std::error::Error>>(())
2340    /// ```
2341    #[inline]
2342    pub fn saturating_add<A: Into<ZonedArithmetic>>(
2343        &self,
2344        duration: A,
2345    ) -> Zoned {
2346        let duration: ZonedArithmetic = duration.into();
2347        self.checked_add(duration).unwrap_or_else(|_| {
2348            let ts = if duration.is_negative() {
2349                Timestamp::MIN
2350            } else {
2351                Timestamp::MAX
2352            };
2353            ts.to_zoned(self.time_zone().clone())
2354        })
2355    }
2356
2357    /// This routine is identical to [`Zoned::saturating_add`] with the span
2358    /// parameter negated.
2359    ///
2360    /// # Example
2361    ///
2362    /// ```
2363    /// use jiff::{civil::date, SignedDuration, Timestamp, ToSpan};
2364    ///
2365    /// let zdt = date(2024, 3, 31).at(13, 13, 13, 13).in_tz("America/New_York")?;
2366    /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(19000.years()).timestamp());
2367    /// assert_eq!(Timestamp::MAX, zdt.saturating_sub(-9000.years()).timestamp());
2368    /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(SignedDuration::MAX).timestamp());
2369    /// assert_eq!(Timestamp::MAX, zdt.saturating_sub(SignedDuration::MIN).timestamp());
2370    /// assert_eq!(Timestamp::MIN, zdt.saturating_sub(std::time::Duration::MAX).timestamp());
2371    ///
2372    /// # Ok::<(), Box<dyn std::error::Error>>(())
2373    /// ```
2374    #[inline]
2375    pub fn saturating_sub<A: Into<ZonedArithmetic>>(
2376        &self,
2377        duration: A,
2378    ) -> Zoned {
2379        let duration: ZonedArithmetic = duration.into();
2380        let Ok(duration) = duration.checked_neg() else {
2381            return Timestamp::MIN.to_zoned(self.time_zone().clone());
2382        };
2383        self.saturating_add(duration)
2384    }
2385
2386    /// Returns a span representing the elapsed time from this zoned datetime
2387    /// until the given `other` zoned datetime.
2388    ///
2389    /// When `other` occurs before this datetime, then the span returned will
2390    /// be negative.
2391    ///
2392    /// Depending on the input provided, the span returned is rounded. It may
2393    /// also be balanced up to bigger units than the default. By default, the
2394    /// span returned is balanced such that the biggest possible unit is hours.
2395    /// This default is an API guarantee. Users can rely on the default not
2396    /// returning any calendar units in the default configuration.
2397    ///
2398    /// This operation is configured by providing a [`ZonedDifference`]
2399    /// value. Since this routine accepts anything that implements
2400    /// `Into<ZonedDifference>`, once can pass a `&Zoned` directly.
2401    /// One can also pass a `(Unit, &Zoned)`, where `Unit` is treated as
2402    /// [`ZonedDifference::largest`].
2403    ///
2404    /// # Properties
2405    ///
2406    /// It is guaranteed that if the returned span is subtracted from `other`,
2407    /// and if no rounding is requested, and if the largest unit requested
2408    /// is at most `Unit::Hour`, then the original zoned datetime will be
2409    /// returned.
2410    ///
2411    /// This routine is equivalent to `self.since(other).map(|span| -span)`
2412    /// if no rounding options are set. If rounding options are set, then
2413    /// it's equivalent to
2414    /// `self.since(other_without_rounding_options).map(|span| -span)`,
2415    /// followed by a call to [`Span::round`] with the appropriate rounding
2416    /// options set. This is because the negation of a span can result in
2417    /// different rounding results depending on the rounding mode.
2418    ///
2419    /// # Errors
2420    ///
2421    /// An error can occur in some cases when the requested configuration
2422    /// would result in a span that is beyond allowable limits. For example,
2423    /// the nanosecond component of a span cannot represent the span of
2424    /// time between the minimum and maximum zoned datetime supported by Jiff.
2425    /// Therefore, if one requests a span with its largest unit set to
2426    /// [`Unit::Nanosecond`], then it's possible for this routine to fail.
2427    ///
2428    /// An error can also occur if `ZonedDifference` is misconfigured. For
2429    /// example, if the smallest unit provided is bigger than the largest unit.
2430    ///
2431    /// An error can also occur if units greater than `Unit::Hour` are
2432    /// requested _and_ if the time zones in the provided zoned datetimes
2433    /// are distinct. (See [`TimeZone`]'s section on equality for details on
2434    /// how equality is determined.) This error occurs because the length of
2435    /// a day may vary depending on the time zone. To work around this
2436    /// restriction, convert one or both of the zoned datetimes into the same
2437    /// time zone.
2438    ///
2439    /// It is guaranteed that if one provides a datetime with the default
2440    /// [`ZonedDifference`] configuration, then this routine will never
2441    /// fail.
2442    ///
2443    /// # Example
2444    ///
2445    /// ```
2446    /// use jiff::{civil::date, ToSpan};
2447    ///
2448    /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("America/New_York")?;
2449    /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("America/New_York")?;
2450    /// assert_eq!(
2451    ///     earlier.until(&later)?,
2452    ///     109_031.hours().minutes(30).fieldwise(),
2453    /// );
2454    ///
2455    /// // Flipping the dates is fine, but you'll get a negative span.
2456    /// assert_eq!(
2457    ///     later.until(&earlier)?,
2458    ///     -109_031.hours().minutes(30).fieldwise(),
2459    /// );
2460    ///
2461    /// # Ok::<(), Box<dyn std::error::Error>>(())
2462    /// ```
2463    ///
2464    /// # Example: using bigger units
2465    ///
2466    /// This example shows how to expand the span returned to bigger units.
2467    /// This makes use of a `From<(Unit, &Zoned)> for ZonedDifference`
2468    /// trait implementation.
2469    ///
2470    /// ```
2471    /// use jiff::{civil::date, Unit, ToSpan};
2472    ///
2473    /// let zdt1 = date(1995, 12, 07).at(3, 24, 30, 3500).in_tz("America/New_York")?;
2474    /// let zdt2 = date(2019, 01, 31).at(15, 30, 0, 0).in_tz("America/New_York")?;
2475    ///
2476    /// // The default limits durations to using "hours" as the biggest unit.
2477    /// let span = zdt1.until(&zdt2)?;
2478    /// assert_eq!(span.to_string(), "PT202956H5M29.9999965S");
2479    ///
2480    /// // But we can ask for units all the way up to years.
2481    /// let span = zdt1.until((Unit::Year, &zdt2))?;
2482    /// assert_eq!(format!("{span:#}"), "23y 1mo 24d 12h 5m 29s 999ms 996µs 500ns");
2483    /// # Ok::<(), Box<dyn std::error::Error>>(())
2484    /// ```
2485    ///
2486    /// # Example: rounding the result
2487    ///
2488    /// This shows how one might find the difference between two zoned
2489    /// datetimes and have the result rounded such that sub-seconds are
2490    /// removed.
2491    ///
2492    /// In this case, we need to hand-construct a [`ZonedDifference`]
2493    /// in order to gain full configurability.
2494    ///
2495    /// ```
2496    /// use jiff::{civil::date, Unit, ToSpan, ZonedDifference};
2497    ///
2498    /// let zdt1 = date(1995, 12, 07).at(3, 24, 30, 3500).in_tz("America/New_York")?;
2499    /// let zdt2 = date(2019, 01, 31).at(15, 30, 0, 0).in_tz("America/New_York")?;
2500    ///
2501    /// let span = zdt1.until(
2502    ///     ZonedDifference::from(&zdt2).smallest(Unit::Second),
2503    /// )?;
2504    /// assert_eq!(format!("{span:#}"), "202956h 5m 29s");
2505    ///
2506    /// // We can combine smallest and largest units too!
2507    /// let span = zdt1.until(
2508    ///     ZonedDifference::from(&zdt2)
2509    ///         .smallest(Unit::Second)
2510    ///         .largest(Unit::Year),
2511    /// )?;
2512    /// assert_eq!(span.to_string(), "P23Y1M24DT12H5M29S");
2513    ///
2514    /// # Ok::<(), Box<dyn std::error::Error>>(())
2515    /// ```
2516    ///
2517    /// # Example: units biggers than days inhibit reversibility
2518    ///
2519    /// If you ask for units bigger than hours, then adding the span returned
2520    /// to the `other` zoned datetime is not guaranteed to result in the
2521    /// original zoned datetime. For example:
2522    ///
2523    /// ```
2524    /// use jiff::{civil::date, Unit, ToSpan};
2525    ///
2526    /// let zdt1 = date(2024, 3, 2).at(0, 0, 0, 0).in_tz("America/New_York")?;
2527    /// let zdt2 = date(2024, 5, 1).at(0, 0, 0, 0).in_tz("America/New_York")?;
2528    ///
2529    /// let span = zdt1.until((Unit::Month, &zdt2))?;
2530    /// assert_eq!(span, 1.month().days(29).fieldwise());
2531    /// let maybe_original = zdt2.checked_sub(span)?;
2532    /// // Not the same as the original datetime!
2533    /// assert_eq!(
2534    ///     maybe_original,
2535    ///     date(2024, 3, 3).at(0, 0, 0, 0).in_tz("America/New_York")?,
2536    /// );
2537    ///
2538    /// // But in the default configuration, hours are always the biggest unit
2539    /// // and reversibility is guaranteed.
2540    /// let span = zdt1.until(&zdt2)?;
2541    /// assert_eq!(span.to_string(), "PT1439H");
2542    /// let is_original = zdt2.checked_sub(span)?;
2543    /// assert_eq!(is_original, zdt1);
2544    ///
2545    /// # Ok::<(), Box<dyn std::error::Error>>(())
2546    /// ```
2547    ///
2548    /// This occurs because spans are added as if by adding the biggest units
2549    /// first, and then the smaller units. Because months vary in length,
2550    /// their meaning can change depending on how the span is added. In this
2551    /// case, adding one month to `2024-03-02` corresponds to 31 days, but
2552    /// subtracting one month from `2024-05-01` corresponds to 30 days.
2553    #[inline]
2554    pub fn until<'a, A: Into<ZonedDifference<'a>>>(
2555        &self,
2556        other: A,
2557    ) -> Result<Span, Error> {
2558        let args: ZonedDifference = other.into();
2559        let span = args.until_with_largest_unit(self)?;
2560        if args.rounding_may_change_span() {
2561            span.round(args.round.relative(self))
2562        } else {
2563            Ok(span)
2564        }
2565    }
2566
2567    /// This routine is identical to [`Zoned::until`], but the order of the
2568    /// parameters is flipped.
2569    ///
2570    /// # Errors
2571    ///
2572    /// This has the same error conditions as [`Zoned::until`].
2573    ///
2574    /// # Example
2575    ///
2576    /// This routine can be used via the `-` operator. Since the default
2577    /// configuration is used and because a `Span` can represent the difference
2578    /// between any two possible zoned datetimes, it will never panic. Note
2579    /// that we use `&zdt1 - &zdt2` instead of `zdt1 - zdt2` since `Sub` is
2580    /// implemented for `&Zoned` and not `Zoned`. This is because `Zoned` is
2581    /// not `Copy`.
2582    ///
2583    /// ```
2584    /// use jiff::{civil::date, ToSpan};
2585    ///
2586    /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("America/New_York")?;
2587    /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("America/New_York")?;
2588    /// assert_eq!(&later - &earlier, 109_031.hours().minutes(30).fieldwise());
2589    ///
2590    /// # Ok::<(), Box<dyn std::error::Error>>(())
2591    /// ```
2592    #[inline]
2593    pub fn since<'a, A: Into<ZonedDifference<'a>>>(
2594        &self,
2595        other: A,
2596    ) -> Result<Span, Error> {
2597        let args: ZonedDifference = other.into();
2598        let span = -args.until_with_largest_unit(self)?;
2599        if args.rounding_may_change_span() {
2600            span.round(args.round.relative(self))
2601        } else {
2602            Ok(span)
2603        }
2604    }
2605
2606    /// Returns an absolute duration representing the elapsed time from this
2607    /// zoned datetime until the given `other` zoned datetime.
2608    ///
2609    /// When `other` occurs before this zoned datetime, then the duration
2610    /// returned will be negative.
2611    ///
2612    /// Unlike [`Zoned::until`], this always returns a duration
2613    /// corresponding to a 96-bit integer of nanoseconds between two
2614    /// zoned datetimes.
2615    ///
2616    /// # Fallibility
2617    ///
2618    /// This routine never panics or returns an error. Since there are no
2619    /// configuration options that can be incorrectly provided, no error is
2620    /// possible when calling this routine. In contrast, [`Zoned::until`]
2621    /// can return an error in some cases due to misconfiguration. But like
2622    /// this routine, [`Zoned::until`] never panics or returns an error in
2623    /// its default configuration.
2624    ///
2625    /// # When should I use this versus [`Zoned::until`]?
2626    ///
2627    /// See the type documentation for [`SignedDuration`] for the section on
2628    /// when one should use [`Span`] and when one should use `SignedDuration`.
2629    /// In short, use `Span` (and therefore `Timestamp::until`) unless you have
2630    /// a specific reason to do otherwise.
2631    ///
2632    /// # Example
2633    ///
2634    /// ```
2635    /// use jiff::{civil::date, SignedDuration};
2636    ///
2637    /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("US/Eastern")?;
2638    /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("US/Eastern")?;
2639    /// assert_eq!(
2640    ///     earlier.duration_until(&later),
2641    ///     SignedDuration::from_hours(109_031) + SignedDuration::from_mins(30),
2642    /// );
2643    ///
2644    /// // Flipping the dates is fine, but you'll get a negative span.
2645    /// assert_eq!(
2646    ///     later.duration_until(&earlier),
2647    ///     -SignedDuration::from_hours(109_031) + -SignedDuration::from_mins(30),
2648    /// );
2649    ///
2650    /// # Ok::<(), Box<dyn std::error::Error>>(())
2651    /// ```
2652    ///
2653    /// # Example: difference with [`Zoned::until`]
2654    ///
2655    /// The main difference between this routine and `Zoned::until` is that
2656    /// the latter can return units other than a 96-bit integer of nanoseconds.
2657    /// While a 96-bit integer of nanoseconds can be converted into other units
2658    /// like hours, this can only be done for uniform units. (Uniform units are
2659    /// units for which each individual unit always corresponds to the same
2660    /// elapsed time regardless of the datetime it is relative to.) This can't
2661    /// be done for units like years, months or days.
2662    ///
2663    /// ```
2664    /// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit};
2665    ///
2666    /// let zdt1 = date(2024, 3, 10).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2667    /// let zdt2 = date(2024, 3, 11).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2668    ///
2669    /// let span = zdt1.until((Unit::Day, &zdt2))?;
2670    /// assert_eq!(format!("{span:#}"), "1d");
2671    ///
2672    /// let duration = zdt1.duration_until(&zdt2);
2673    /// // This day was only 23 hours long!
2674    /// assert_eq!(duration, SignedDuration::from_hours(23));
2675    /// // There's no way to extract years, months or days from the signed
2676    /// // duration like one might extract hours (because every hour
2677    /// // is the same length). Instead, you actually have to convert
2678    /// // it to a span and then balance it by providing a relative date!
2679    /// let options = SpanRound::new().largest(Unit::Day).relative(&zdt1);
2680    /// let span = Span::try_from(duration)?.round(options)?;
2681    /// assert_eq!(format!("{span:#}"), "1d");
2682    ///
2683    /// # Ok::<(), Box<dyn std::error::Error>>(())
2684    /// ```
2685    ///
2686    /// # Example: getting an unsigned duration
2687    ///
2688    /// If you're looking to find the duration between two zoned datetimes as
2689    /// a [`std::time::Duration`], you'll need to use this method to get a
2690    /// [`SignedDuration`] and then convert it to a `std::time::Duration`:
2691    ///
2692    /// ```
2693    /// use std::time::Duration;
2694    ///
2695    /// use jiff::civil::date;
2696    ///
2697    /// let zdt1 = date(2024, 7, 1).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2698    /// let zdt2 = date(2024, 8, 1).at(0, 0, 0, 0).in_tz("US/Eastern")?;
2699    /// let duration = Duration::try_from(zdt1.duration_until(&zdt2))?;
2700    /// assert_eq!(duration, Duration::from_secs(31 * 24 * 60 * 60));
2701    ///
2702    /// // Note that unsigned durations cannot represent all
2703    /// // possible differences! If the duration would be negative,
2704    /// // then the conversion fails:
2705    /// assert!(Duration::try_from(zdt2.duration_until(&zdt1)).is_err());
2706    ///
2707    /// # Ok::<(), Box<dyn std::error::Error>>(())
2708    /// ```
2709    #[inline]
2710    pub fn duration_until(&self, other: &Zoned) -> SignedDuration {
2711        SignedDuration::zoned_until(self, other)
2712    }
2713
2714    /// This routine is identical to [`Zoned::duration_until`], but the
2715    /// order of the parameters is flipped.
2716    ///
2717    /// # Example
2718    ///
2719    /// ```
2720    /// use jiff::{civil::date, SignedDuration};
2721    ///
2722    /// let earlier = date(2006, 8, 24).at(22, 30, 0, 0).in_tz("US/Eastern")?;
2723    /// let later = date(2019, 1, 31).at(21, 0, 0, 0).in_tz("US/Eastern")?;
2724    /// assert_eq!(
2725    ///     later.duration_since(&earlier),
2726    ///     SignedDuration::from_hours(109_031) + SignedDuration::from_mins(30),
2727    /// );
2728    ///
2729    /// # Ok::<(), Box<dyn std::error::Error>>(())
2730    /// ```
2731    #[inline]
2732    pub fn duration_since(&self, other: &Zoned) -> SignedDuration {
2733        SignedDuration::zoned_until(other, self)
2734    }
2735
2736    /// Rounds this zoned datetime according to the [`ZonedRound`]
2737    /// configuration given.
2738    ///
2739    /// The principal option is [`ZonedRound::smallest`], which allows one to
2740    /// configure the smallest units in the returned zoned datetime. Rounding
2741    /// is what determines whether that unit should keep its current value
2742    /// or whether it should be incremented. Moreover, the amount it should
2743    /// be incremented can be configured via [`ZonedRound::increment`].
2744    /// Finally, the rounding strategy itself can be configured via
2745    /// [`ZonedRound::mode`].
2746    ///
2747    /// Note that this routine is generic and accepts anything that
2748    /// implements `Into<ZonedRound>`. Some notable implementations are:
2749    ///
2750    /// * `From<Unit> for ZonedRound`, which will automatically create a
2751    /// `ZonedRound::new().smallest(unit)` from the unit provided.
2752    /// * `From<(Unit, i64)> for ZonedRound`, which will automatically
2753    /// create a `ZonedRound::new().smallest(unit).increment(number)` from
2754    /// the unit and increment provided.
2755    ///
2756    /// # Errors
2757    ///
2758    /// This returns an error if the smallest unit configured on the given
2759    /// [`ZonedRound`] is bigger than days. An error is also returned if
2760    /// the rounding increment is greater than 1 when the units are days.
2761    /// (Currently, rounding to the nearest week, month or year is not
2762    /// supported.)
2763    ///
2764    /// When the smallest unit is less than days, the rounding increment must
2765    /// divide evenly into the next highest unit after the smallest unit
2766    /// configured (and must not be equivalent to it). For example, if the
2767    /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
2768    /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
2769    /// Namely, any integer that divides evenly into `1,000` nanoseconds since
2770    /// there are `1,000` nanoseconds in the next highest unit (microseconds).
2771    ///
2772    /// This can also return an error in some cases where rounding would
2773    /// require arithmetic that exceeds the maximum zoned datetime value.
2774    ///
2775    /// # Example
2776    ///
2777    /// This is a basic example that demonstrates rounding a zoned datetime
2778    /// to the nearest day. This also demonstrates calling this method with
2779    /// the smallest unit directly, instead of constructing a `ZonedRound`
2780    /// manually.
2781    ///
2782    /// ```
2783    /// use jiff::{civil::date, Unit};
2784    ///
2785    /// // rounds up
2786    /// let zdt = date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York")?;
2787    /// assert_eq!(
2788    ///     zdt.round(Unit::Day)?,
2789    ///     date(2024, 6, 20).at(0, 0, 0, 0).in_tz("America/New_York")?,
2790    /// );
2791    ///
2792    /// // rounds down
2793    /// let zdt = date(2024, 6, 19).at(10, 0, 0, 0).in_tz("America/New_York")?;
2794    /// assert_eq!(
2795    ///     zdt.round(Unit::Day)?,
2796    ///     date(2024, 6, 19).at(0, 0, 0, 0).in_tz("America/New_York")?,
2797    /// );
2798    ///
2799    /// # Ok::<(), Box<dyn std::error::Error>>(())
2800    /// ```
2801    ///
2802    /// # Example: changing the rounding mode
2803    ///
2804    /// The default rounding mode is [`RoundMode::HalfExpand`], which
2805    /// breaks ties by rounding away from zero. But other modes like
2806    /// [`RoundMode::Trunc`] can be used too:
2807    ///
2808    /// ```
2809    /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound};
2810    ///
2811    /// let zdt = date(2024, 6, 19).at(15, 0, 0, 0).in_tz("America/New_York")?;
2812    /// assert_eq!(
2813    ///     zdt.round(Unit::Day)?,
2814    ///     date(2024, 6, 20).at(0, 0, 0, 0).in_tz("America/New_York")?,
2815    /// );
2816    /// // The default will round up to the next day for any time past noon (as
2817    /// // shown above), but using truncation rounding will always round down.
2818    /// assert_eq!(
2819    ///     zdt.round(
2820    ///         ZonedRound::new().smallest(Unit::Day).mode(RoundMode::Trunc),
2821    ///     )?,
2822    ///     date(2024, 6, 19).at(0, 0, 0, 0).in_tz("America/New_York")?,
2823    /// );
2824    ///
2825    /// # Ok::<(), Box<dyn std::error::Error>>(())
2826    /// ```
2827    ///
2828    /// # Example: rounding to the nearest 5 minute increment
2829    ///
2830    /// ```
2831    /// use jiff::{civil::date, Unit};
2832    ///
2833    /// // rounds down
2834    /// let zdt = date(2024, 6, 19)
2835    ///     .at(15, 27, 29, 999_999_999)
2836    ///     .in_tz("America/New_York")?;
2837    /// assert_eq!(
2838    ///     zdt.round((Unit::Minute, 5))?,
2839    ///     date(2024, 6, 19).at(15, 25, 0, 0).in_tz("America/New_York")?,
2840    /// );
2841    /// // rounds up
2842    /// let zdt = date(2024, 6, 19)
2843    ///     .at(15, 27, 30, 0)
2844    ///     .in_tz("America/New_York")?;
2845    /// assert_eq!(
2846    ///     zdt.round((Unit::Minute, 5))?,
2847    ///     date(2024, 6, 19).at(15, 30, 0, 0).in_tz("America/New_York")?,
2848    /// );
2849    ///
2850    /// # Ok::<(), Box<dyn std::error::Error>>(())
2851    /// ```
2852    ///
2853    /// # Example: behavior near time zone transitions
2854    ///
2855    /// When rounding this zoned datetime near time zone transitions (such as
2856    /// DST), the "sensible" thing is done by default. Namely, rounding will
2857    /// jump to the closest instant, even if the change in civil clock time is
2858    /// large. For example, when rounding up into a gap, the civil clock time
2859    /// will jump over the gap, but the corresponding change in the instant is
2860    /// as one might expect:
2861    ///
2862    /// ```
2863    /// use jiff::{Unit, Zoned};
2864    ///
2865    /// let zdt1: Zoned = "2024-03-10T01:59:00-05[America/New_York]".parse()?;
2866    /// let zdt2 = zdt1.round(Unit::Hour)?;
2867    /// assert_eq!(
2868    ///     zdt2.to_string(),
2869    ///     "2024-03-10T03:00:00-04:00[America/New_York]",
2870    /// );
2871    ///
2872    /// # Ok::<(), Box<dyn std::error::Error>>(())
2873    /// ```
2874    ///
2875    /// Similarly, when rounding inside a fold, rounding will respect whether
2876    /// it's the first or second time the clock has repeated the hour. For the
2877    /// DST transition in New York on `2024-11-03` from offset `-04` to `-05`,
2878    /// here is an example that rounds the first 1 o'clock hour:
2879    ///
2880    /// ```
2881    /// use jiff::{Unit, Zoned};
2882    ///
2883    /// let zdt1: Zoned = "2024-11-03T01:59:01-04[America/New_York]".parse()?;
2884    /// let zdt2 = zdt1.round(Unit::Minute)?;
2885    /// assert_eq!(
2886    ///     zdt2.to_string(),
2887    ///     "2024-11-03T01:59:00-04:00[America/New_York]",
2888    /// );
2889    ///
2890    /// # Ok::<(), Box<dyn std::error::Error>>(())
2891    /// ```
2892    ///
2893    /// And now the second 1 o'clock hour. Notice how the rounded result stays
2894    /// in the second 1 o'clock hour.
2895    ///
2896    /// ```
2897    /// use jiff::{Unit, Zoned};
2898    ///
2899    /// let zdt1: Zoned = "2024-11-03T01:59:01-05[America/New_York]".parse()?;
2900    /// let zdt2 = zdt1.round(Unit::Minute)?;
2901    /// assert_eq!(
2902    ///     zdt2.to_string(),
2903    ///     "2024-11-03T01:59:00-05:00[America/New_York]",
2904    /// );
2905    ///
2906    /// # Ok::<(), Box<dyn std::error::Error>>(())
2907    /// ```
2908    ///
2909    /// # Example: rounding to nearest day takes length of day into account
2910    ///
2911    /// Some days are shorter than 24 hours, and so rounding down will occur
2912    /// even when the time is past noon:
2913    ///
2914    /// ```
2915    /// use jiff::{Unit, Zoned};
2916    ///
2917    /// let zdt1: Zoned = "2025-03-09T12:15-04[America/New_York]".parse()?;
2918    /// let zdt2 = zdt1.round(Unit::Day)?;
2919    /// assert_eq!(
2920    ///     zdt2.to_string(),
2921    ///     "2025-03-09T00:00:00-05:00[America/New_York]",
2922    /// );
2923    ///
2924    /// // For 23 hour days, 12:30 is the tipping point to round up in the
2925    /// // default rounding configuration:
2926    /// let zdt1: Zoned = "2025-03-09T12:30-04[America/New_York]".parse()?;
2927    /// let zdt2 = zdt1.round(Unit::Day)?;
2928    /// assert_eq!(
2929    ///     zdt2.to_string(),
2930    ///     "2025-03-10T00:00:00-04:00[America/New_York]",
2931    /// );
2932    ///
2933    /// # Ok::<(), Box<dyn std::error::Error>>(())
2934    /// ```
2935    ///
2936    /// And some days are longer than 24 hours, and so rounding _up_ will occur
2937    /// even when the time is before noon:
2938    ///
2939    /// ```
2940    /// use jiff::{Unit, Zoned};
2941    ///
2942    /// let zdt1: Zoned = "2025-11-02T11:45-05[America/New_York]".parse()?;
2943    /// let zdt2 = zdt1.round(Unit::Day)?;
2944    /// assert_eq!(
2945    ///     zdt2.to_string(),
2946    ///     "2025-11-03T00:00:00-05:00[America/New_York]",
2947    /// );
2948    ///
2949    /// // For 25 hour days, 11:30 is the tipping point to round up in the
2950    /// // default rounding configuration. So 11:29 will round down:
2951    /// let zdt1: Zoned = "2025-11-02T11:29-05[America/New_York]".parse()?;
2952    /// let zdt2 = zdt1.round(Unit::Day)?;
2953    /// assert_eq!(
2954    ///     zdt2.to_string(),
2955    ///     "2025-11-02T00:00:00-04:00[America/New_York]",
2956    /// );
2957    ///
2958    /// # Ok::<(), Box<dyn std::error::Error>>(())
2959    /// ```
2960    ///
2961    /// # Example: overflow error
2962    ///
2963    /// This example demonstrates that it's possible for this operation to
2964    /// result in an error from zoned datetime arithmetic overflow.
2965    ///
2966    /// ```
2967    /// use jiff::{Timestamp, Unit};
2968    ///
2969    /// let zdt = Timestamp::MAX.in_tz("America/New_York")?;
2970    /// assert!(zdt.round(Unit::Day).is_err());
2971    ///
2972    /// # Ok::<(), Box<dyn std::error::Error>>(())
2973    /// ```
2974    ///
2975    /// This occurs because rounding to the nearest day for the maximum
2976    /// timestamp would result in rounding up to the next day. But the next day
2977    /// is greater than the maximum, and so this returns an error.
2978    #[inline]
2979    pub fn round<R: Into<ZonedRound>>(
2980        &self,
2981        options: R,
2982    ) -> Result<Zoned, Error> {
2983        let options: ZonedRound = options.into();
2984        options.round(self)
2985    }
2986
2987    /*
2988    /// Return an iterator of periodic zoned datetimes determined by the given
2989    /// span.
2990    ///
2991    /// The given span may be negative, in which case, the iterator will move
2992    /// backwards through time. The iterator won't stop until either the span
2993    /// itself overflows, or it would otherwise exceed the minimum or maximum
2994    /// `Zoned` value.
2995    ///
2996    /// # Example: when to check a glucose monitor
2997    ///
2998    /// When my cat had diabetes, my veterinarian installed a glucose monitor
2999    /// and instructed me to scan it about every 5 hours. This example lists
3000    /// all of the times I need to scan it for the 2 days following its
3001    /// installation:
3002    ///
3003    /// ```
3004    /// use jiff::{civil::datetime, ToSpan};
3005    ///
3006    /// let start = datetime(2023, 7, 15, 16, 30, 0, 0).in_tz("America/New_York")?;
3007    /// let end = start.checked_add(2.days())?;
3008    /// let mut scan_times = vec![];
3009    /// for zdt in start.series(5.hours()).take_while(|zdt| zdt <= end) {
3010    ///     scan_times.push(zdt.datetime());
3011    /// }
3012    /// assert_eq!(scan_times, vec![
3013    ///     datetime(2023, 7, 15, 16, 30, 0, 0),
3014    ///     datetime(2023, 7, 15, 21, 30, 0, 0),
3015    ///     datetime(2023, 7, 16, 2, 30, 0, 0),
3016    ///     datetime(2023, 7, 16, 7, 30, 0, 0),
3017    ///     datetime(2023, 7, 16, 12, 30, 0, 0),
3018    ///     datetime(2023, 7, 16, 17, 30, 0, 0),
3019    ///     datetime(2023, 7, 16, 22, 30, 0, 0),
3020    ///     datetime(2023, 7, 17, 3, 30, 0, 0),
3021    ///     datetime(2023, 7, 17, 8, 30, 0, 0),
3022    ///     datetime(2023, 7, 17, 13, 30, 0, 0),
3023    /// ]);
3024    ///
3025    /// # Ok::<(), Box<dyn std::error::Error>>(())
3026    /// ```
3027    ///
3028    /// # Example
3029    ///
3030    /// BREADCRUMBS: Maybe just remove ZonedSeries for now..?
3031    ///
3032    /// ```
3033    /// use jiff::{civil::date, ToSpan};
3034    ///
3035    /// let zdt = date(2011, 12, 28).in_tz("Pacific/Apia")?;
3036    /// let mut it = zdt.series(1.day());
3037    /// assert_eq!(it.next(), Some(date(2011, 12, 28).in_tz("Pacific/Apia")?));
3038    /// assert_eq!(it.next(), Some(date(2011, 12, 29).in_tz("Pacific/Apia")?));
3039    /// assert_eq!(it.next(), Some(date(2011, 12, 30).in_tz("Pacific/Apia")?));
3040    /// assert_eq!(it.next(), Some(date(2011, 12, 31).in_tz("Pacific/Apia")?));
3041    /// assert_eq!(it.next(), Some(date(2012, 01, 01).in_tz("Pacific/Apia")?));
3042    ///
3043    /// # Ok::<(), Box<dyn std::error::Error>>(())
3044    /// ```
3045    #[inline]
3046    pub fn series(self, period: Span) -> ZonedSeries {
3047        ZonedSeries { start: self, period, step: 0 }
3048    }
3049    */
3050
3051    #[inline]
3052    fn into_parts(self) -> (Timestamp, DateTime, Offset, TimeZone) {
3053        let inner = self.inner;
3054        let ZonedInner { timestamp, datetime, offset, time_zone } = inner;
3055        (timestamp, datetime, offset, time_zone)
3056    }
3057}
3058
3059/// Parsing and formatting using a "printf"-style API.
3060impl Zoned {
3061    /// Parses a zoned datetime in `input` matching the given `format`.
3062    ///
3063    /// The format string uses a "printf"-style API where conversion
3064    /// specifiers can be used as place holders to match components of
3065    /// a datetime. For details on the specifiers supported, see the
3066    /// [`fmt::strtime`] module documentation.
3067    ///
3068    /// # Warning
3069    ///
3070    /// The `strtime` module APIs do not require an IANA time zone identifier
3071    /// to parse a `Zoned`. If one is not used, then if you format a zoned
3072    /// datetime in a time zone like `America/New_York` and then parse it back
3073    /// again, the zoned datetime you get back will be a "fixed offset" zoned
3074    /// datetime. This in turn means it will not perform daylight saving time
3075    /// safe arithmetic.
3076    ///
3077    /// However, the `%Q` directive may be used to both format and parse an
3078    /// IANA time zone identifier. It is strongly recommended to use this
3079    /// directive whenever one is formatting or parsing `Zoned` values.
3080    ///
3081    /// # Errors
3082    ///
3083    /// This returns an error when parsing failed. This might happen because
3084    /// the format string itself was invalid, or because the input didn't match
3085    /// the format string.
3086    ///
3087    /// This also returns an error if there wasn't sufficient information to
3088    /// construct a zoned datetime. For example, if an offset wasn't parsed.
3089    ///
3090    /// # Example
3091    ///
3092    /// This example shows how to parse a zoned datetime:
3093    ///
3094    /// ```
3095    /// use jiff::Zoned;
3096    ///
3097    /// let zdt = Zoned::strptime("%F %H:%M %:Q", "2024-07-14 21:14 US/Eastern")?;
3098    /// assert_eq!(zdt.to_string(), "2024-07-14T21:14:00-04:00[US/Eastern]");
3099    ///
3100    /// # Ok::<(), Box<dyn std::error::Error>>(())
3101    /// ```
3102    #[inline]
3103    pub fn strptime(
3104        format: impl AsRef<[u8]>,
3105        input: impl AsRef<[u8]>,
3106    ) -> Result<Zoned, Error> {
3107        fmt::strtime::parse(format, input).and_then(|tm| tm.to_zoned())
3108    }
3109
3110    /// Formats this zoned datetime according to the given `format`.
3111    ///
3112    /// The format string uses a "printf"-style API where conversion
3113    /// specifiers can be used as place holders to format components of
3114    /// a datetime. For details on the specifiers supported, see the
3115    /// [`fmt::strtime`] module documentation.
3116    ///
3117    /// # Warning
3118    ///
3119    /// The `strtime` module APIs do not support parsing or formatting with
3120    /// IANA time zone identifiers. This means that if you format a zoned
3121    /// datetime in a time zone like `America/New_York` and then parse it back
3122    /// again, the zoned datetime you get back will be a "fixed offset" zoned
3123    /// datetime. This in turn means it will not perform daylight saving time
3124    /// safe arithmetic.
3125    ///
3126    /// The `strtime` modules APIs are useful for ad hoc formatting and
3127    /// parsing, but they shouldn't be used as an interchange format. For
3128    /// an interchange format, the default `std::fmt::Display` and
3129    /// `std::str::FromStr` trait implementations on `Zoned` are appropriate.
3130    ///
3131    /// # Errors and panics
3132    ///
3133    /// While this routine itself does not error or panic, using the value
3134    /// returned may result in a panic if formatting fails. See the
3135    /// documentation on [`fmt::strtime::Display`] for more information.
3136    ///
3137    /// To format in a way that surfaces errors without panicking, use either
3138    /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`].
3139    ///
3140    /// # Example
3141    ///
3142    /// While the output of the Unix `date` command is likely locale specific,
3143    /// this is what it looks like on my system:
3144    ///
3145    /// ```
3146    /// use jiff::civil::date;
3147    ///
3148    /// let zdt = date(2024, 7, 15).at(16, 24, 59, 0).in_tz("America/New_York")?;
3149    /// let string = zdt.strftime("%a %b %e %I:%M:%S %p %Z %Y").to_string();
3150    /// assert_eq!(string, "Mon Jul 15 04:24:59 PM EDT 2024");
3151    ///
3152    /// # Ok::<(), Box<dyn std::error::Error>>(())
3153    /// ```
3154    #[inline]
3155    pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>(
3156        &self,
3157        format: &'f F,
3158    ) -> fmt::strtime::Display<'f> {
3159        fmt::strtime::Display { fmt: format.as_ref(), tm: self.into() }
3160    }
3161}
3162
3163impl Default for Zoned {
3164    #[inline]
3165    fn default() -> Zoned {
3166        Zoned::new(Timestamp::default(), TimeZone::UTC)
3167    }
3168}
3169
3170/// Converts a `Zoned` datetime into a human readable datetime string.
3171///
3172/// (This `Debug` representation currently emits the same string as the
3173/// `Display` representation, but this is not a guarantee.)
3174///
3175/// Options currently supported:
3176///
3177/// * [`std::fmt::Formatter::precision`] can be set to control the precision
3178/// of the fractional second component.
3179///
3180/// # Example
3181///
3182/// ```
3183/// use jiff::civil::date;
3184///
3185/// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_000_000).in_tz("US/Eastern")?;
3186/// assert_eq!(
3187///     format!("{zdt:.6?}"),
3188///     "2024-06-15T07:00:00.123000-04:00[US/Eastern]",
3189/// );
3190/// // Precision values greater than 9 are clamped to 9.
3191/// assert_eq!(
3192///     format!("{zdt:.300?}"),
3193///     "2024-06-15T07:00:00.123000000-04:00[US/Eastern]",
3194/// );
3195/// // A precision of 0 implies the entire fractional
3196/// // component is always truncated.
3197/// assert_eq!(
3198///     format!("{zdt:.0?}"),
3199///     "2024-06-15T07:00:00-04:00[US/Eastern]",
3200/// );
3201///
3202/// # Ok::<(), Box<dyn std::error::Error>>(())
3203/// ```
3204impl core::fmt::Debug for Zoned {
3205    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
3206        core::fmt::Display::fmt(self, f)
3207    }
3208}
3209
3210/// Converts a `Zoned` datetime into a RFC 9557 compliant string.
3211///
3212/// Options currently supported:
3213///
3214/// * [`std::fmt::Formatter::precision`] can be set to control the precision
3215/// of the fractional second component.
3216///
3217/// # Example
3218///
3219/// ```
3220/// use jiff::civil::date;
3221///
3222/// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_000_000).in_tz("US/Eastern")?;
3223/// assert_eq!(
3224///     format!("{zdt:.6}"),
3225///     "2024-06-15T07:00:00.123000-04:00[US/Eastern]",
3226/// );
3227/// // Precision values greater than 9 are clamped to 9.
3228/// assert_eq!(
3229///     format!("{zdt:.300}"),
3230///     "2024-06-15T07:00:00.123000000-04:00[US/Eastern]",
3231/// );
3232/// // A precision of 0 implies the entire fractional
3233/// // component is always truncated.
3234/// assert_eq!(
3235///     format!("{zdt:.0}"),
3236///     "2024-06-15T07:00:00-04:00[US/Eastern]",
3237/// );
3238///
3239/// # Ok::<(), Box<dyn std::error::Error>>(())
3240/// ```
3241impl core::fmt::Display for Zoned {
3242    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
3243        use crate::fmt::StdFmtWrite;
3244
3245        let precision =
3246            f.precision().map(|p| u8::try_from(p).unwrap_or(u8::MAX));
3247        temporal::DateTimePrinter::new()
3248            .precision(precision)
3249            .print_zoned(self, StdFmtWrite(f))
3250            .map_err(|_| core::fmt::Error)
3251    }
3252}
3253
3254/// Parses a zoned timestamp from the Temporal datetime format.
3255///
3256/// See the [`fmt::temporal`](crate::fmt::temporal) for more information on
3257/// the precise format.
3258///
3259/// Note that this is only enabled when the `std` feature
3260/// is enabled because it requires access to a global
3261/// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase).
3262impl core::str::FromStr for Zoned {
3263    type Err = Error;
3264
3265    fn from_str(string: &str) -> Result<Zoned, Error> {
3266        DEFAULT_DATETIME_PARSER.parse_zoned(string)
3267    }
3268}
3269
3270impl Eq for Zoned {}
3271
3272impl PartialEq for Zoned {
3273    #[inline]
3274    fn eq(&self, rhs: &Zoned) -> bool {
3275        self.timestamp().eq(&rhs.timestamp())
3276    }
3277}
3278
3279impl<'a> PartialEq<Zoned> for &'a Zoned {
3280    #[inline]
3281    fn eq(&self, rhs: &Zoned) -> bool {
3282        (**self).eq(rhs)
3283    }
3284}
3285
3286impl Ord for Zoned {
3287    #[inline]
3288    fn cmp(&self, rhs: &Zoned) -> core::cmp::Ordering {
3289        self.timestamp().cmp(&rhs.timestamp())
3290    }
3291}
3292
3293impl PartialOrd for Zoned {
3294    #[inline]
3295    fn partial_cmp(&self, rhs: &Zoned) -> Option<core::cmp::Ordering> {
3296        Some(self.cmp(rhs))
3297    }
3298}
3299
3300impl<'a> PartialOrd<Zoned> for &'a Zoned {
3301    #[inline]
3302    fn partial_cmp(&self, rhs: &Zoned) -> Option<core::cmp::Ordering> {
3303        (**self).partial_cmp(rhs)
3304    }
3305}
3306
3307impl core::hash::Hash for Zoned {
3308    #[inline]
3309    fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
3310        self.timestamp().hash(state);
3311    }
3312}
3313
3314#[cfg(feature = "std")]
3315impl TryFrom<std::time::SystemTime> for Zoned {
3316    type Error = Error;
3317
3318    #[inline]
3319    fn try_from(system_time: std::time::SystemTime) -> Result<Zoned, Error> {
3320        let timestamp = Timestamp::try_from(system_time)?;
3321        Ok(Zoned::new(timestamp, TimeZone::system()))
3322    }
3323}
3324
3325#[cfg(feature = "std")]
3326impl From<Zoned> for std::time::SystemTime {
3327    #[inline]
3328    fn from(time: Zoned) -> std::time::SystemTime {
3329        time.timestamp().into()
3330    }
3331}
3332
3333/// Adds a span of time to a zoned datetime.
3334///
3335/// This uses checked arithmetic and panics on overflow. To handle overflow
3336/// without panics, use [`Zoned::checked_add`].
3337impl<'a> core::ops::Add<Span> for &'a Zoned {
3338    type Output = Zoned;
3339
3340    #[inline]
3341    fn add(self, rhs: Span) -> Zoned {
3342        self.checked_add(rhs)
3343            .expect("adding span to zoned datetime overflowed")
3344    }
3345}
3346
3347/// Adds a span of time to a zoned datetime in place.
3348///
3349/// This uses checked arithmetic and panics on overflow. To handle overflow
3350/// without panics, use [`Zoned::checked_add`].
3351impl core::ops::AddAssign<Span> for Zoned {
3352    #[inline]
3353    fn add_assign(&mut self, rhs: Span) {
3354        *self = &*self + rhs
3355    }
3356}
3357
3358/// Subtracts a span of time from a zoned datetime.
3359///
3360/// This uses checked arithmetic and panics on overflow. To handle overflow
3361/// without panics, use [`Zoned::checked_sub`].
3362impl<'a> core::ops::Sub<Span> for &'a Zoned {
3363    type Output = Zoned;
3364
3365    #[inline]
3366    fn sub(self, rhs: Span) -> Zoned {
3367        self.checked_sub(rhs)
3368            .expect("subtracting span from zoned datetime overflowed")
3369    }
3370}
3371
3372/// Subtracts a span of time from a zoned datetime in place.
3373///
3374/// This uses checked arithmetic and panics on overflow. To handle overflow
3375/// without panics, use [`Zoned::checked_sub`].
3376impl core::ops::SubAssign<Span> for Zoned {
3377    #[inline]
3378    fn sub_assign(&mut self, rhs: Span) {
3379        *self = &*self - rhs
3380    }
3381}
3382
3383/// Computes the span of time between two zoned datetimes.
3384///
3385/// This will return a negative span when the zoned datetime being subtracted
3386/// is greater.
3387///
3388/// Since this uses the default configuration for calculating a span between
3389/// two zoned datetimes (no rounding and largest units is hours), this will
3390/// never panic or fail in any way. It is guaranteed that the largest non-zero
3391/// unit in the `Span` returned will be hours.
3392///
3393/// To configure the largest unit or enable rounding, use [`Zoned::since`].
3394impl<'a> core::ops::Sub for &'a Zoned {
3395    type Output = Span;
3396
3397    #[inline]
3398    fn sub(self, rhs: &'a Zoned) -> Span {
3399        self.since(rhs).expect("since never fails when given Zoned")
3400    }
3401}
3402
3403/// Adds a signed duration of time to a zoned datetime.
3404///
3405/// This uses checked arithmetic and panics on overflow. To handle overflow
3406/// without panics, use [`Zoned::checked_add`].
3407impl<'a> core::ops::Add<SignedDuration> for &'a Zoned {
3408    type Output = Zoned;
3409
3410    #[inline]
3411    fn add(self, rhs: SignedDuration) -> Zoned {
3412        self.checked_add(rhs)
3413            .expect("adding signed duration to zoned datetime overflowed")
3414    }
3415}
3416
3417/// Adds a signed duration of time to a zoned datetime in place.
3418///
3419/// This uses checked arithmetic and panics on overflow. To handle overflow
3420/// without panics, use [`Zoned::checked_add`].
3421impl core::ops::AddAssign<SignedDuration> for Zoned {
3422    #[inline]
3423    fn add_assign(&mut self, rhs: SignedDuration) {
3424        *self = &*self + rhs
3425    }
3426}
3427
3428/// Subtracts a signed duration of time from a zoned datetime.
3429///
3430/// This uses checked arithmetic and panics on overflow. To handle overflow
3431/// without panics, use [`Zoned::checked_sub`].
3432impl<'a> core::ops::Sub<SignedDuration> for &'a Zoned {
3433    type Output = Zoned;
3434
3435    #[inline]
3436    fn sub(self, rhs: SignedDuration) -> Zoned {
3437        self.checked_sub(rhs).expect(
3438            "subtracting signed duration from zoned datetime overflowed",
3439        )
3440    }
3441}
3442
3443/// Subtracts a signed duration of time from a zoned datetime in place.
3444///
3445/// This uses checked arithmetic and panics on overflow. To handle overflow
3446/// without panics, use [`Zoned::checked_sub`].
3447impl core::ops::SubAssign<SignedDuration> for Zoned {
3448    #[inline]
3449    fn sub_assign(&mut self, rhs: SignedDuration) {
3450        *self = &*self - rhs
3451    }
3452}
3453
3454/// Adds an unsigned duration of time to a zoned datetime.
3455///
3456/// This uses checked arithmetic and panics on overflow. To handle overflow
3457/// without panics, use [`Zoned::checked_add`].
3458impl<'a> core::ops::Add<UnsignedDuration> for &'a Zoned {
3459    type Output = Zoned;
3460
3461    #[inline]
3462    fn add(self, rhs: UnsignedDuration) -> Zoned {
3463        self.checked_add(rhs)
3464            .expect("adding unsigned duration to zoned datetime overflowed")
3465    }
3466}
3467
3468/// Adds an unsigned duration of time to a zoned datetime in place.
3469///
3470/// This uses checked arithmetic and panics on overflow. To handle overflow
3471/// without panics, use [`Zoned::checked_add`].
3472impl core::ops::AddAssign<UnsignedDuration> for Zoned {
3473    #[inline]
3474    fn add_assign(&mut self, rhs: UnsignedDuration) {
3475        *self = &*self + rhs
3476    }
3477}
3478
3479/// Subtracts an unsigned duration of time from a zoned datetime.
3480///
3481/// This uses checked arithmetic and panics on overflow. To handle overflow
3482/// without panics, use [`Zoned::checked_sub`].
3483impl<'a> core::ops::Sub<UnsignedDuration> for &'a Zoned {
3484    type Output = Zoned;
3485
3486    #[inline]
3487    fn sub(self, rhs: UnsignedDuration) -> Zoned {
3488        self.checked_sub(rhs).expect(
3489            "subtracting unsigned duration from zoned datetime overflowed",
3490        )
3491    }
3492}
3493
3494/// Subtracts an unsigned duration of time from a zoned datetime in place.
3495///
3496/// This uses checked arithmetic and panics on overflow. To handle overflow
3497/// without panics, use [`Zoned::checked_sub`].
3498impl core::ops::SubAssign<UnsignedDuration> for Zoned {
3499    #[inline]
3500    fn sub_assign(&mut self, rhs: UnsignedDuration) {
3501        *self = &*self - rhs
3502    }
3503}
3504
3505#[cfg(feature = "serde")]
3506impl serde::Serialize for Zoned {
3507    #[inline]
3508    fn serialize<S: serde::Serializer>(
3509        &self,
3510        serializer: S,
3511    ) -> Result<S::Ok, S::Error> {
3512        serializer.collect_str(self)
3513    }
3514}
3515
3516#[cfg(feature = "serde")]
3517impl<'de> serde::Deserialize<'de> for Zoned {
3518    #[inline]
3519    fn deserialize<D: serde::Deserializer<'de>>(
3520        deserializer: D,
3521    ) -> Result<Zoned, D::Error> {
3522        use serde::de;
3523
3524        struct ZonedVisitor;
3525
3526        impl<'de> de::Visitor<'de> for ZonedVisitor {
3527            type Value = Zoned;
3528
3529            fn expecting(
3530                &self,
3531                f: &mut core::fmt::Formatter,
3532            ) -> core::fmt::Result {
3533                f.write_str("a zoned datetime string")
3534            }
3535
3536            #[inline]
3537            fn visit_bytes<E: de::Error>(
3538                self,
3539                value: &[u8],
3540            ) -> Result<Zoned, E> {
3541                DEFAULT_DATETIME_PARSER
3542                    .parse_zoned(value)
3543                    .map_err(de::Error::custom)
3544            }
3545
3546            #[inline]
3547            fn visit_str<E: de::Error>(self, value: &str) -> Result<Zoned, E> {
3548                self.visit_bytes(value.as_bytes())
3549            }
3550        }
3551
3552        deserializer.deserialize_str(ZonedVisitor)
3553    }
3554}
3555
3556#[cfg(test)]
3557impl quickcheck::Arbitrary for Zoned {
3558    fn arbitrary(g: &mut quickcheck::Gen) -> Zoned {
3559        let timestamp = Timestamp::arbitrary(g);
3560        let tz = TimeZone::UTC; // TODO: do something better here?
3561        Zoned::new(timestamp, tz)
3562    }
3563
3564    fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> {
3565        let timestamp = self.timestamp();
3566        alloc::boxed::Box::new(
3567            timestamp
3568                .shrink()
3569                .map(|timestamp| Zoned::new(timestamp, TimeZone::UTC)),
3570        )
3571    }
3572}
3573
3574/*
3575/// An iterator over periodic zoned datetimes, created by [`Zoned::series`].
3576///
3577/// It is exhausted when the next value would exceed a [`Span`] or [`Zoned`]
3578/// value.
3579#[derive(Clone, Debug)]
3580pub struct ZonedSeries {
3581    start: Zoned,
3582    period: Span,
3583    step: i64,
3584}
3585
3586impl Iterator for ZonedSeries {
3587    type Item = Zoned;
3588
3589    #[inline]
3590    fn next(&mut self) -> Option<Zoned> {
3591        // let this = self.start.clone();
3592        // self.start = self.start.checked_add(self.period).ok()?;
3593        // Some(this)
3594        // This is how civil::DateTime series works. But this has a problem
3595        // for Zoned when there are time zone transitions that skip an entire
3596        // day. For example, Pacific/Api doesn't have a December 30, 2011.
3597        // For that case, the code above works better. But if you do it that
3598        // way, then you get the `jan31 + 1 month = feb28` and
3599        // `feb28 + 1 month = march28` problem. Where you would instead
3600        // expect jan31, feb28, mar31... I think.
3601        //
3602        // So I'm not quite sure how to resolve this particular conundrum.
3603        // And this is why ZonedSeries is currently not available.
3604        let span = self.period.checked_mul(self.step).ok()?;
3605        self.step = self.step.checked_add(1)?;
3606        let zdt = self.start.checked_add(span).ok()?;
3607        Some(zdt)
3608    }
3609}
3610*/
3611
3612/// Options for [`Timestamp::checked_add`] and [`Timestamp::checked_sub`].
3613///
3614/// This type provides a way to ergonomically add one of a few different
3615/// duration types to a [`Timestamp`].
3616///
3617/// The main way to construct values of this type is with its `From` trait
3618/// implementations:
3619///
3620/// * `From<Span> for ZonedArithmetic` adds (or subtracts) the given span
3621/// to the receiver timestamp.
3622/// * `From<SignedDuration> for ZonedArithmetic` adds (or subtracts)
3623/// the given signed duration to the receiver timestamp.
3624/// * `From<std::time::Duration> for ZonedArithmetic` adds (or subtracts)
3625/// the given unsigned duration to the receiver timestamp.
3626///
3627/// # Example
3628///
3629/// ```
3630/// use std::time::Duration;
3631///
3632/// use jiff::{SignedDuration, Timestamp, ToSpan};
3633///
3634/// let ts: Timestamp = "2024-02-28T00:00:00Z".parse()?;
3635/// assert_eq!(
3636///     ts.checked_add(48.hours())?,
3637///     "2024-03-01T00:00:00Z".parse()?,
3638/// );
3639/// assert_eq!(
3640///     ts.checked_add(SignedDuration::from_hours(48))?,
3641///     "2024-03-01T00:00:00Z".parse()?,
3642/// );
3643/// assert_eq!(
3644///     ts.checked_add(Duration::from_secs(48 * 60 * 60))?,
3645///     "2024-03-01T00:00:00Z".parse()?,
3646/// );
3647///
3648/// # Ok::<(), Box<dyn std::error::Error>>(())
3649/// ```
3650#[derive(Clone, Copy, Debug)]
3651pub struct ZonedArithmetic {
3652    duration: Duration,
3653}
3654
3655impl ZonedArithmetic {
3656    #[inline]
3657    fn checked_add(self, zdt: &Zoned) -> Result<Zoned, Error> {
3658        match self.duration.to_signed()? {
3659            SDuration::Span(span) => zdt.checked_add_span(span),
3660            SDuration::Absolute(sdur) => zdt.checked_add_duration(sdur),
3661        }
3662    }
3663
3664    #[inline]
3665    fn checked_neg(self) -> Result<ZonedArithmetic, Error> {
3666        let duration = self.duration.checked_neg()?;
3667        Ok(ZonedArithmetic { duration })
3668    }
3669
3670    #[inline]
3671    fn is_negative(&self) -> bool {
3672        self.duration.is_negative()
3673    }
3674}
3675
3676impl From<Span> for ZonedArithmetic {
3677    fn from(span: Span) -> ZonedArithmetic {
3678        let duration = Duration::from(span);
3679        ZonedArithmetic { duration }
3680    }
3681}
3682
3683impl From<SignedDuration> for ZonedArithmetic {
3684    fn from(sdur: SignedDuration) -> ZonedArithmetic {
3685        let duration = Duration::from(sdur);
3686        ZonedArithmetic { duration }
3687    }
3688}
3689
3690impl From<UnsignedDuration> for ZonedArithmetic {
3691    fn from(udur: UnsignedDuration) -> ZonedArithmetic {
3692        let duration = Duration::from(udur);
3693        ZonedArithmetic { duration }
3694    }
3695}
3696
3697impl<'a> From<&'a Span> for ZonedArithmetic {
3698    fn from(span: &'a Span) -> ZonedArithmetic {
3699        ZonedArithmetic::from(*span)
3700    }
3701}
3702
3703impl<'a> From<&'a SignedDuration> for ZonedArithmetic {
3704    fn from(sdur: &'a SignedDuration) -> ZonedArithmetic {
3705        ZonedArithmetic::from(*sdur)
3706    }
3707}
3708
3709impl<'a> From<&'a UnsignedDuration> for ZonedArithmetic {
3710    fn from(udur: &'a UnsignedDuration) -> ZonedArithmetic {
3711        ZonedArithmetic::from(*udur)
3712    }
3713}
3714
3715/// Options for [`Zoned::since`] and [`Zoned::until`].
3716///
3717/// This type provides a way to configure the calculation of spans between two
3718/// [`Zoned`] values. In particular, both `Zoned::since` and `Zoned::until`
3719/// accept anything that implements `Into<ZonedDifference>`. There are a few
3720/// key trait implementations that make this convenient:
3721///
3722/// * `From<&Zoned> for ZonedDifference` will construct a configuration
3723/// consisting of just the zoned datetime. So for example, `zdt1.since(zdt2)`
3724/// returns the span from `zdt2` to `zdt1`.
3725/// * `From<(Unit, &Zoned)>` is a convenient way to specify the largest units
3726/// that should be present on the span returned. By default, the largest units
3727/// are days. Using this trait implementation is equivalent to
3728/// `ZonedDifference::new(&zdt).largest(unit)`.
3729///
3730/// One can also provide a `ZonedDifference` value directly. Doing so
3731/// is necessary to use the rounding features of calculating a span. For
3732/// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the
3733/// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment
3734/// (defaults to `1`). The defaults are selected such that no rounding occurs.
3735///
3736/// Rounding a span as part of calculating it is provided as a convenience.
3737/// Callers may choose to round the span as a distinct step via
3738/// [`Span::round`], but callers may need to provide a reference date
3739/// for rounding larger units. By coupling rounding with routines like
3740/// [`Zoned::since`], the reference date can be set automatically based on
3741/// the input to `Zoned::since`.
3742///
3743/// # Example
3744///
3745/// This example shows how to round a span between two zoned datetimes to the
3746/// nearest half-hour, with ties breaking away from zero.
3747///
3748/// ```
3749/// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference};
3750///
3751/// let zdt1 = "2024-03-15 08:14:00.123456789[America/New_York]".parse::<Zoned>()?;
3752/// let zdt2 = "2030-03-22 15:00[America/New_York]".parse::<Zoned>()?;
3753/// let span = zdt1.until(
3754///     ZonedDifference::new(&zdt2)
3755///         .smallest(Unit::Minute)
3756///         .largest(Unit::Year)
3757///         .mode(RoundMode::HalfExpand)
3758///         .increment(30),
3759/// )?;
3760/// assert_eq!(span, 6.years().days(7).hours(7).fieldwise());
3761///
3762/// # Ok::<(), Box<dyn std::error::Error>>(())
3763/// ```
3764#[derive(Clone, Copy, Debug)]
3765pub struct ZonedDifference<'a> {
3766    zoned: &'a Zoned,
3767    round: SpanRound<'static>,
3768}
3769
3770impl<'a> ZonedDifference<'a> {
3771    /// Create a new default configuration for computing the span between the
3772    /// given zoned datetime and some other zoned datetime (specified as the
3773    /// receiver in [`Zoned::since`] or [`Zoned::until`]).
3774    #[inline]
3775    pub fn new(zoned: &'a Zoned) -> ZonedDifference<'a> {
3776        // We use truncation rounding by default since it seems that's
3777        // what is generally expected when computing the difference between
3778        // datetimes.
3779        //
3780        // See: https://github.com/tc39/proposal-temporal/issues/1122
3781        let round = SpanRound::new().mode(RoundMode::Trunc);
3782        ZonedDifference { zoned, round }
3783    }
3784
3785    /// Set the smallest units allowed in the span returned.
3786    ///
3787    /// When a largest unit is not specified and the smallest unit is hours
3788    /// or greater, then the largest unit is automatically set to be equal to
3789    /// the smallest unit.
3790    ///
3791    /// # Errors
3792    ///
3793    /// The smallest units must be no greater than the largest units. If this
3794    /// is violated, then computing a span with this configuration will result
3795    /// in an error.
3796    ///
3797    /// # Example
3798    ///
3799    /// This shows how to round a span between two zoned datetimes to the
3800    /// nearest number of weeks.
3801    ///
3802    /// ```
3803    /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference};
3804    ///
3805    /// let zdt1 = "2024-03-15 08:14[America/New_York]".parse::<Zoned>()?;
3806    /// let zdt2 = "2030-11-22 08:30[America/New_York]".parse::<Zoned>()?;
3807    /// let span = zdt1.until(
3808    ///     ZonedDifference::new(&zdt2)
3809    ///         .smallest(Unit::Week)
3810    ///         .largest(Unit::Week)
3811    ///         .mode(RoundMode::HalfExpand),
3812    /// )?;
3813    /// assert_eq!(format!("{span:#}"), "349w");
3814    ///
3815    /// # Ok::<(), Box<dyn std::error::Error>>(())
3816    /// ```
3817    #[inline]
3818    pub fn smallest(self, unit: Unit) -> ZonedDifference<'a> {
3819        ZonedDifference { round: self.round.smallest(unit), ..self }
3820    }
3821
3822    /// Set the largest units allowed in the span returned.
3823    ///
3824    /// When a largest unit is not specified and the smallest unit is hours
3825    /// or greater, then the largest unit is automatically set to be equal to
3826    /// the smallest unit. Otherwise, when the largest unit is not specified,
3827    /// it is set to hours.
3828    ///
3829    /// Once a largest unit is set, there is no way to change this rounding
3830    /// configuration back to using the "automatic" default. Instead, callers
3831    /// must create a new configuration.
3832    ///
3833    /// # Errors
3834    ///
3835    /// The largest units, when set, must be at least as big as the smallest
3836    /// units (which defaults to [`Unit::Nanosecond`]). If this is violated,
3837    /// then computing a span with this configuration will result in an error.
3838    ///
3839    /// # Example
3840    ///
3841    /// This shows how to round a span between two zoned datetimes to units no
3842    /// bigger than seconds.
3843    ///
3844    /// ```
3845    /// use jiff::{ToSpan, Unit, Zoned, ZonedDifference};
3846    ///
3847    /// let zdt1 = "2024-03-15 08:14[America/New_York]".parse::<Zoned>()?;
3848    /// let zdt2 = "2030-11-22 08:30[America/New_York]".parse::<Zoned>()?;
3849    /// let span = zdt1.until(
3850    ///     ZonedDifference::new(&zdt2).largest(Unit::Second),
3851    /// )?;
3852    /// assert_eq!(span.to_string(), "PT211079760S");
3853    ///
3854    /// # Ok::<(), Box<dyn std::error::Error>>(())
3855    /// ```
3856    #[inline]
3857    pub fn largest(self, unit: Unit) -> ZonedDifference<'a> {
3858        ZonedDifference { round: self.round.largest(unit), ..self }
3859    }
3860
3861    /// Set the rounding mode.
3862    ///
3863    /// This defaults to [`RoundMode::Trunc`] since it's plausible that
3864    /// rounding "up" in the context of computing the span between
3865    /// two zoned datetimes could be surprising in a number of cases. The
3866    /// [`RoundMode::HalfExpand`] mode corresponds to typical rounding you
3867    /// might have learned about in school. But a variety of other rounding
3868    /// modes exist.
3869    ///
3870    /// # Example
3871    ///
3872    /// This shows how to always round "up" towards positive infinity.
3873    ///
3874    /// ```
3875    /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference};
3876    ///
3877    /// let zdt1 = "2024-03-15 08:10[America/New_York]".parse::<Zoned>()?;
3878    /// let zdt2 = "2024-03-15 08:11[America/New_York]".parse::<Zoned>()?;
3879    /// let span = zdt1.until(
3880    ///     ZonedDifference::new(&zdt2)
3881    ///         .smallest(Unit::Hour)
3882    ///         .mode(RoundMode::Ceil),
3883    /// )?;
3884    /// // Only one minute elapsed, but we asked to always round up!
3885    /// assert_eq!(span, 1.hour().fieldwise());
3886    ///
3887    /// // Since `Ceil` always rounds toward positive infinity, the behavior
3888    /// // flips for a negative span.
3889    /// let span = zdt1.since(
3890    ///     ZonedDifference::new(&zdt2)
3891    ///         .smallest(Unit::Hour)
3892    ///         .mode(RoundMode::Ceil),
3893    /// )?;
3894    /// assert_eq!(span, 0.hour().fieldwise());
3895    ///
3896    /// # Ok::<(), Box<dyn std::error::Error>>(())
3897    /// ```
3898    #[inline]
3899    pub fn mode(self, mode: RoundMode) -> ZonedDifference<'a> {
3900        ZonedDifference { round: self.round.mode(mode), ..self }
3901    }
3902
3903    /// Set the rounding increment for the smallest unit.
3904    ///
3905    /// The default value is `1`. Other values permit rounding the smallest
3906    /// unit to the nearest integer increment specified. For example, if the
3907    /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
3908    /// `30` would result in rounding in increments of a half hour. That is,
3909    /// the only minute value that could result would be `0` or `30`.
3910    ///
3911    /// # Errors
3912    ///
3913    /// When the smallest unit is less than days, the rounding increment must
3914    /// divide evenly into the next highest unit after the smallest unit
3915    /// configured (and must not be equivalent to it). For example, if the
3916    /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
3917    /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
3918    /// Namely, any integer that divides evenly into `1,000` nanoseconds since
3919    /// there are `1,000` nanoseconds in the next highest unit (microseconds).
3920    ///
3921    /// The error will occur when computing the span, and not when setting
3922    /// the increment here.
3923    ///
3924    /// # Example
3925    ///
3926    /// This shows how to round the span between two zoned datetimes to the
3927    /// nearest 5 minute increment.
3928    ///
3929    /// ```
3930    /// use jiff::{RoundMode, ToSpan, Unit, Zoned, ZonedDifference};
3931    ///
3932    /// let zdt1 = "2024-03-15 08:19[America/New_York]".parse::<Zoned>()?;
3933    /// let zdt2 = "2024-03-15 12:52[America/New_York]".parse::<Zoned>()?;
3934    /// let span = zdt1.until(
3935    ///     ZonedDifference::new(&zdt2)
3936    ///         .smallest(Unit::Minute)
3937    ///         .increment(5)
3938    ///         .mode(RoundMode::HalfExpand),
3939    /// )?;
3940    /// assert_eq!(format!("{span:#}"), "4h 35m");
3941    ///
3942    /// # Ok::<(), Box<dyn std::error::Error>>(())
3943    /// ```
3944    #[inline]
3945    pub fn increment(self, increment: i64) -> ZonedDifference<'a> {
3946        ZonedDifference { round: self.round.increment(increment), ..self }
3947    }
3948
3949    /// Returns true if and only if this configuration could change the span
3950    /// via rounding.
3951    #[inline]
3952    fn rounding_may_change_span(&self) -> bool {
3953        self.round.rounding_may_change_span_ignore_largest()
3954    }
3955
3956    /// Returns the span of time from `dt1` to the datetime in this
3957    /// configuration. The biggest units allowed are determined by the
3958    /// `smallest` and `largest` settings, but defaults to `Unit::Day`.
3959    #[inline]
3960    fn until_with_largest_unit(&self, zdt1: &Zoned) -> Result<Span, Error> {
3961        let zdt2 = self.zoned;
3962
3963        let sign = t::sign(zdt2, zdt1);
3964        if sign == C(0) {
3965            return Ok(Span::new());
3966        }
3967
3968        let largest = self
3969            .round
3970            .get_largest()
3971            .unwrap_or_else(|| self.round.get_smallest().max(Unit::Hour));
3972        if largest < Unit::Day {
3973            return zdt1.timestamp().until((largest, zdt2.timestamp()));
3974        }
3975        if zdt1.time_zone() != zdt2.time_zone() {
3976            return Err(err!(
3977                "computing the span between zoned datetimes, with \
3978                 {largest} units, requires that the time zones are \
3979                 equivalent, but {zdt1} and {zdt2} have distinct \
3980                 time zones",
3981                largest = largest.singular(),
3982            ));
3983        }
3984        let tz = zdt1.time_zone();
3985
3986        let (dt1, mut dt2) = (zdt1.datetime(), zdt2.datetime());
3987
3988        let mut day_correct: t::SpanDays = C(0).rinto();
3989        if -sign == dt1.time().until_nanoseconds(dt2.time()).signum() {
3990            day_correct += C(1);
3991        }
3992
3993        let mut mid = dt2
3994            .date()
3995            .checked_add(Span::new().days_ranged(day_correct * -sign))
3996            .with_context(|| {
3997                err!(
3998                    "failed to add {days} days to date in {dt2}",
3999                    days = day_correct * -sign,
4000                )
4001            })?
4002            .to_datetime(dt1.time());
4003        let mut zmid: Zoned = mid.to_zoned(tz.clone()).with_context(|| {
4004            err!(
4005                "failed to convert intermediate datetime {mid} \
4006                     to zoned timestamp in time zone {tz}",
4007                tz = tz.diagnostic_name(),
4008            )
4009        })?;
4010        if t::sign(zdt2, &zmid) == -sign {
4011            if sign == C(-1) {
4012                panic!("this should be an error");
4013            }
4014            day_correct += C(1);
4015            mid = dt2
4016                .date()
4017                .checked_add(Span::new().days_ranged(day_correct * -sign))
4018                .with_context(|| {
4019                    err!(
4020                        "failed to add {days} days to date in {dt2}",
4021                        days = day_correct * -sign,
4022                    )
4023                })?
4024                .to_datetime(dt1.time());
4025            zmid = mid.to_zoned(tz.clone()).with_context(|| {
4026                err!(
4027                    "failed to convert intermediate datetime {mid} \
4028                         to zoned timestamp in time zone {tz}",
4029                    tz = tz.diagnostic_name(),
4030                )
4031            })?;
4032            if t::sign(zdt2, &zmid) == -sign {
4033                panic!("this should be an error too");
4034            }
4035        }
4036        let remainder_nano = zdt2.timestamp().as_nanosecond_ranged()
4037            - zmid.timestamp().as_nanosecond_ranged();
4038        dt2 = mid;
4039
4040        let date_span = dt1.date().until((largest, dt2.date()))?;
4041        Ok(Span::from_invariant_nanoseconds(
4042            Unit::Hour,
4043            remainder_nano.rinto(),
4044        )
4045        .expect("difference between time always fits in span")
4046        .years_ranged(date_span.get_years_ranged())
4047        .months_ranged(date_span.get_months_ranged())
4048        .weeks_ranged(date_span.get_weeks_ranged())
4049        .days_ranged(date_span.get_days_ranged()))
4050    }
4051}
4052
4053impl<'a> From<&'a Zoned> for ZonedDifference<'a> {
4054    #[inline]
4055    fn from(zdt: &'a Zoned) -> ZonedDifference<'a> {
4056        ZonedDifference::new(zdt)
4057    }
4058}
4059
4060impl<'a> From<(Unit, &'a Zoned)> for ZonedDifference<'a> {
4061    #[inline]
4062    fn from((largest, zdt): (Unit, &'a Zoned)) -> ZonedDifference<'a> {
4063        ZonedDifference::new(zdt).largest(largest)
4064    }
4065}
4066
4067/// Options for [`Zoned::round`].
4068///
4069/// This type provides a way to configure the rounding of a zoned datetime. In
4070/// particular, `Zoned::round` accepts anything that implements the
4071/// `Into<ZonedRound>` trait. There are some trait implementations that
4072/// therefore make calling `Zoned::round` in some common cases more
4073/// ergonomic:
4074///
4075/// * `From<Unit> for ZonedRound` will construct a rounding
4076/// configuration that rounds to the unit given. Specifically,
4077/// `ZonedRound::new().smallest(unit)`.
4078/// * `From<(Unit, i64)> for ZonedRound` is like the one above, but also
4079/// specifies the rounding increment for [`ZonedRound::increment`].
4080///
4081/// Note that in the default configuration, no rounding occurs.
4082///
4083/// # Example
4084///
4085/// This example shows how to round a zoned datetime to the nearest second:
4086///
4087/// ```
4088/// use jiff::{civil::date, Unit, Zoned};
4089///
4090/// let zdt: Zoned = "2024-06-20 16:24:59.5[America/New_York]".parse()?;
4091/// assert_eq!(
4092///     zdt.round(Unit::Second)?,
4093///     // The second rounds up and causes minutes to increase.
4094///     date(2024, 6, 20).at(16, 25, 0, 0).in_tz("America/New_York")?,
4095/// );
4096///
4097/// # Ok::<(), Box<dyn std::error::Error>>(())
4098/// ```
4099///
4100/// The above makes use of the fact that `Unit` implements
4101/// `Into<ZonedRound>`. If you want to change the rounding mode to, say,
4102/// truncation, then you'll need to construct a `ZonedRound` explicitly
4103/// since there are no convenience `Into` trait implementations for
4104/// [`RoundMode`].
4105///
4106/// ```
4107/// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound};
4108///
4109/// let zdt: Zoned = "2024-06-20 16:24:59.5[America/New_York]".parse()?;
4110/// assert_eq!(
4111///     zdt.round(
4112///         ZonedRound::new().smallest(Unit::Second).mode(RoundMode::Trunc),
4113///     )?,
4114///     // The second just gets truncated as if it wasn't there.
4115///     date(2024, 6, 20).at(16, 24, 59, 0).in_tz("America/New_York")?,
4116/// );
4117///
4118/// # Ok::<(), Box<dyn std::error::Error>>(())
4119/// ```
4120#[derive(Clone, Copy, Debug)]
4121pub struct ZonedRound {
4122    round: DateTimeRound,
4123}
4124
4125impl ZonedRound {
4126    /// Create a new default configuration for rounding a [`Zoned`].
4127    #[inline]
4128    pub fn new() -> ZonedRound {
4129        ZonedRound { round: DateTimeRound::new() }
4130    }
4131
4132    /// Set the smallest units allowed in the zoned datetime returned after
4133    /// rounding.
4134    ///
4135    /// Any units below the smallest configured unit will be used, along
4136    /// with the rounding increment and rounding mode, to determine
4137    /// the value of the smallest unit. For example, when rounding
4138    /// `2024-06-20T03:25:30[America/New_York]` to the nearest minute, the `30`
4139    /// second unit will result in rounding the minute unit of `25` up to `26`
4140    /// and zeroing out everything below minutes.
4141    ///
4142    /// This defaults to [`Unit::Nanosecond`].
4143    ///
4144    /// # Errors
4145    ///
4146    /// The smallest units must be no greater than [`Unit::Day`]. And when the
4147    /// smallest unit is `Unit::Day`, the rounding increment must be equal to
4148    /// `1`. Otherwise an error will be returned from [`Zoned::round`].
4149    ///
4150    /// # Example
4151    ///
4152    /// ```
4153    /// use jiff::{civil::date, Unit, ZonedRound};
4154    ///
4155    /// let zdt = date(2024, 6, 20).at(3, 25, 30, 0).in_tz("America/New_York")?;
4156    /// assert_eq!(
4157    ///     zdt.round(ZonedRound::new().smallest(Unit::Minute))?,
4158    ///     date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York")?,
4159    /// );
4160    /// // Or, utilize the `From<Unit> for ZonedRound` impl:
4161    /// assert_eq!(
4162    ///     zdt.round(Unit::Minute)?,
4163    ///     date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York")?,
4164    /// );
4165    ///
4166    /// # Ok::<(), Box<dyn std::error::Error>>(())
4167    /// ```
4168    #[inline]
4169    pub fn smallest(self, unit: Unit) -> ZonedRound {
4170        ZonedRound { round: self.round.smallest(unit) }
4171    }
4172
4173    /// Set the rounding mode.
4174    ///
4175    /// This defaults to [`RoundMode::HalfExpand`], which rounds away from
4176    /// zero. It matches the kind of rounding you might have been taught in
4177    /// school.
4178    ///
4179    /// # Example
4180    ///
4181    /// This shows how to always round zoned datetimes up towards positive
4182    /// infinity.
4183    ///
4184    /// ```
4185    /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound};
4186    ///
4187    /// let zdt: Zoned = "2024-06-20 03:25:01[America/New_York]".parse()?;
4188    /// assert_eq!(
4189    ///     zdt.round(
4190    ///         ZonedRound::new()
4191    ///             .smallest(Unit::Minute)
4192    ///             .mode(RoundMode::Ceil),
4193    ///     )?,
4194    ///     date(2024, 6, 20).at(3, 26, 0, 0).in_tz("America/New_York")?,
4195    /// );
4196    ///
4197    /// # Ok::<(), Box<dyn std::error::Error>>(())
4198    /// ```
4199    #[inline]
4200    pub fn mode(self, mode: RoundMode) -> ZonedRound {
4201        ZonedRound { round: self.round.mode(mode) }
4202    }
4203
4204    /// Set the rounding increment for the smallest unit.
4205    ///
4206    /// The default value is `1`. Other values permit rounding the smallest
4207    /// unit to the nearest integer increment specified. For example, if the
4208    /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
4209    /// `30` would result in rounding in increments of a half hour. That is,
4210    /// the only minute value that could result would be `0` or `30`.
4211    ///
4212    /// # Errors
4213    ///
4214    /// When the smallest unit is `Unit::Day`, then the rounding increment must
4215    /// be `1` or else [`Zoned::round`] will return an error.
4216    ///
4217    /// For other units, the rounding increment must divide evenly into the
4218    /// next highest unit above the smallest unit set. The rounding increment
4219    /// must also not be equal to the next highest unit. For example, if the
4220    /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
4221    /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
4222    /// Namely, any integer that divides evenly into `1,000` nanoseconds since
4223    /// there are `1,000` nanoseconds in the next highest unit (microseconds).
4224    ///
4225    /// # Example
4226    ///
4227    /// This example shows how to round a zoned datetime to the nearest 10
4228    /// minute increment.
4229    ///
4230    /// ```
4231    /// use jiff::{civil::date, RoundMode, Unit, Zoned, ZonedRound};
4232    ///
4233    /// let zdt: Zoned = "2024-06-20 03:24:59[America/New_York]".parse()?;
4234    /// assert_eq!(
4235    ///     zdt.round((Unit::Minute, 10))?,
4236    ///     date(2024, 6, 20).at(3, 20, 0, 0).in_tz("America/New_York")?,
4237    /// );
4238    ///
4239    /// # Ok::<(), Box<dyn std::error::Error>>(())
4240    /// ```
4241    #[inline]
4242    pub fn increment(self, increment: i64) -> ZonedRound {
4243        ZonedRound { round: self.round.increment(increment) }
4244    }
4245
4246    /// Does the actual rounding.
4247    ///
4248    /// Most of the work is farmed out to civil datetime rounding.
4249    pub(crate) fn round(&self, zdt: &Zoned) -> Result<Zoned, Error> {
4250        let start = zdt.datetime();
4251        if self.round.get_smallest() == Unit::Day {
4252            return self.round_days(zdt);
4253        }
4254        let end = self.round.round(start)?;
4255        // Like in the ZonedWith API, in order to avoid small changes to clock
4256        // time hitting a 1 hour disambiguation shift, we use offset conflict
4257        // resolution to do our best to "prefer" the offset we already have.
4258        let amb = OffsetConflict::PreferOffset.resolve(
4259            end,
4260            zdt.offset(),
4261            zdt.time_zone().clone(),
4262        )?;
4263        amb.compatible()
4264    }
4265
4266    /// Does rounding when the smallest unit is equal to days. We don't reuse
4267    /// civil datetime rounding for this since the length of a day for a zoned
4268    /// datetime might not be 24 hours.
4269    ///
4270    /// Ref: https://tc39.es/proposal-temporal/#sec-temporal.zoneddatetime.prototype.round
4271    fn round_days(&self, zdt: &Zoned) -> Result<Zoned, Error> {
4272        debug_assert_eq!(self.round.get_smallest(), Unit::Day);
4273
4274        // Rounding by days requires an increment of 1. We just re-use the
4275        // civil datetime rounding checks, which has the same constraint
4276        // although it does check for other things that aren't relevant here.
4277        increment::for_datetime(Unit::Day, self.round.get_increment())?;
4278
4279        // FIXME: We should be doing this with a &TimeZone, but will need a
4280        // refactor so that we do zone-aware arithmetic using just a Timestamp
4281        // and a &TimeZone. Fixing just this should just be some minor annoying
4282        // work. The grander refactor is something like an `Unzoned` type, but
4283        // I'm not sure that's really worth it. ---AG
4284        let start = zdt.start_of_day().with_context(move || {
4285            err!("failed to find start of day for {zdt}")
4286        })?;
4287        let end = start
4288            .checked_add(Span::new().days_ranged(C(1).rinto()))
4289            .with_context(|| {
4290                err!("failed to add 1 day to {start} to find length of day")
4291            })?;
4292        let span = start
4293            .timestamp()
4294            .until((Unit::Nanosecond, end.timestamp()))
4295            .with_context(|| {
4296                err!(
4297                    "failed to compute span in nanoseconds \
4298                     from {start} until {end}"
4299                )
4300            })?;
4301        let nanos = span.get_nanoseconds_ranged();
4302        let day_length =
4303            ZonedDayNanoseconds::try_rfrom("nanoseconds-per-zoned-day", nanos)
4304                .with_context(|| {
4305                    err!(
4306                        "failed to convert span between {start} until {end} \
4307                         to nanoseconds",
4308                    )
4309                })?;
4310        let progress = zdt.timestamp().as_nanosecond_ranged()
4311            - start.timestamp().as_nanosecond_ranged();
4312        let rounded = self.round.get_mode().round(progress, day_length);
4313        let nanos = start
4314            .timestamp()
4315            .as_nanosecond_ranged()
4316            .try_checked_add("timestamp-nanos", rounded)?;
4317        Ok(Timestamp::from_nanosecond_ranged(nanos)
4318            .to_zoned(zdt.time_zone().clone()))
4319    }
4320}
4321
4322impl Default for ZonedRound {
4323    #[inline]
4324    fn default() -> ZonedRound {
4325        ZonedRound::new()
4326    }
4327}
4328
4329impl From<Unit> for ZonedRound {
4330    #[inline]
4331    fn from(unit: Unit) -> ZonedRound {
4332        ZonedRound::default().smallest(unit)
4333    }
4334}
4335
4336impl From<(Unit, i64)> for ZonedRound {
4337    #[inline]
4338    fn from((unit, increment): (Unit, i64)) -> ZonedRound {
4339        ZonedRound::from(unit).increment(increment)
4340    }
4341}
4342
4343/// A builder for setting the fields on a [`Zoned`].
4344///
4345/// This builder is constructed via [`Zoned::with`].
4346///
4347/// # Example
4348///
4349/// The builder ensures one can chain together the individual components of a
4350/// zoned datetime without it failing at an intermediate step. For example,
4351/// if you had a date of `2024-10-31T00:00:00[America/New_York]` and wanted
4352/// to change both the day and the month, and each setting was validated
4353/// independent of the other, you would need to be careful to set the day first
4354/// and then the month. In some cases, you would need to set the month first
4355/// and then the day!
4356///
4357/// But with the builder, you can set values in any order:
4358///
4359/// ```
4360/// use jiff::civil::date;
4361///
4362/// let zdt1 = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York")?;
4363/// let zdt2 = zdt1.with().month(11).day(30).build()?;
4364/// assert_eq!(
4365///     zdt2,
4366///     date(2024, 11, 30).at(0, 0, 0, 0).in_tz("America/New_York")?,
4367/// );
4368///
4369/// let zdt1 = date(2024, 4, 30).at(0, 0, 0, 0).in_tz("America/New_York")?;
4370/// let zdt2 = zdt1.with().day(31).month(7).build()?;
4371/// assert_eq!(
4372///     zdt2,
4373///     date(2024, 7, 31).at(0, 0, 0, 0).in_tz("America/New_York")?,
4374/// );
4375///
4376/// # Ok::<(), Box<dyn std::error::Error>>(())
4377/// ```
4378#[derive(Clone, Debug)]
4379pub struct ZonedWith {
4380    original: Zoned,
4381    datetime_with: DateTimeWith,
4382    offset: Option<Offset>,
4383    disambiguation: Disambiguation,
4384    offset_conflict: OffsetConflict,
4385}
4386
4387impl ZonedWith {
4388    #[inline]
4389    fn new(original: Zoned) -> ZonedWith {
4390        let datetime_with = original.datetime().with();
4391        ZonedWith {
4392            original,
4393            datetime_with,
4394            offset: None,
4395            disambiguation: Disambiguation::default(),
4396            offset_conflict: OffsetConflict::PreferOffset,
4397        }
4398    }
4399
4400    /// Create a new `Zoned` from the fields set on this configuration.
4401    ///
4402    /// An error occurs when the fields combine to an invalid zoned datetime.
4403    ///
4404    /// For any fields not set on this configuration, the values are taken from
4405    /// the [`Zoned`] that originally created this configuration. When no
4406    /// values are set, this routine is guaranteed to succeed and will always
4407    /// return the original zoned datetime without modification.
4408    ///
4409    /// # Example
4410    ///
4411    /// This creates a zoned datetime corresponding to the last day in the year
4412    /// at noon:
4413    ///
4414    /// ```
4415    /// use jiff::civil::date;
4416    ///
4417    /// let zdt = date(2023, 1, 1).at(12, 0, 0, 0).in_tz("America/New_York")?;
4418    /// assert_eq!(
4419    ///     zdt.with().day_of_year_no_leap(365).build()?,
4420    ///     date(2023, 12, 31).at(12, 0, 0, 0).in_tz("America/New_York")?,
4421    /// );
4422    ///
4423    /// // It also works with leap years for the same input:
4424    /// let zdt = date(2024, 1, 1).at(12, 0, 0, 0).in_tz("America/New_York")?;
4425    /// assert_eq!(
4426    ///     zdt.with().day_of_year_no_leap(365).build()?,
4427    ///     date(2024, 12, 31).at(12, 0, 0, 0).in_tz("America/New_York")?,
4428    /// );
4429    ///
4430    /// # Ok::<(), Box<dyn std::error::Error>>(())
4431    /// ```
4432    ///
4433    /// # Example: error for invalid zoned datetime
4434    ///
4435    /// If the fields combine to form an invalid datetime, then an error is
4436    /// returned:
4437    ///
4438    /// ```
4439    /// use jiff::civil::date;
4440    ///
4441    /// let zdt = date(2024, 11, 30).at(15, 30, 0, 0).in_tz("America/New_York")?;
4442    /// assert!(zdt.with().day(31).build().is_err());
4443    ///
4444    /// let zdt = date(2024, 2, 29).at(15, 30, 0, 0).in_tz("America/New_York")?;
4445    /// assert!(zdt.with().year(2023).build().is_err());
4446    ///
4447    /// # Ok::<(), Box<dyn std::error::Error>>(())
4448    /// ```
4449    #[inline]
4450    pub fn build(self) -> Result<Zoned, Error> {
4451        let dt = self.datetime_with.build()?;
4452        let (_, _, offset, time_zone) = self.original.into_parts();
4453        let offset = self.offset.unwrap_or(offset);
4454        let ambiguous = self.offset_conflict.resolve(dt, offset, time_zone)?;
4455        ambiguous.disambiguate(self.disambiguation)
4456    }
4457
4458    /// Set the year, month and day fields via the `Date` given.
4459    ///
4460    /// This overrides any previous year, month or day settings.
4461    ///
4462    /// # Example
4463    ///
4464    /// This shows how to create a new zoned datetime with a different date:
4465    ///
4466    /// ```
4467    /// use jiff::civil::date;
4468    ///
4469    /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York")?;
4470    /// let zdt2 = zdt1.with().date(date(2017, 10, 31)).build()?;
4471    /// // The date changes but the time remains the same.
4472    /// assert_eq!(
4473    ///     zdt2,
4474    ///     date(2017, 10, 31).at(15, 30, 0, 0).in_tz("America/New_York")?,
4475    /// );
4476    ///
4477    /// # Ok::<(), Box<dyn std::error::Error>>(())
4478    /// ```
4479    #[inline]
4480    pub fn date(self, date: Date) -> ZonedWith {
4481        ZonedWith { datetime_with: self.datetime_with.date(date), ..self }
4482    }
4483
4484    /// Set the hour, minute, second, millisecond, microsecond and nanosecond
4485    /// fields via the `Time` given.
4486    ///
4487    /// This overrides any previous hour, minute, second, millisecond,
4488    /// microsecond, nanosecond or subsecond nanosecond settings.
4489    ///
4490    /// # Example
4491    ///
4492    /// This shows how to create a new zoned datetime with a different time:
4493    ///
4494    /// ```
4495    /// use jiff::civil::{date, time};
4496    ///
4497    /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York")?;
4498    /// let zdt2 = zdt1.with().time(time(23, 59, 59, 123_456_789)).build()?;
4499    /// // The time changes but the date remains the same.
4500    /// assert_eq!(
4501    ///     zdt2,
4502    ///     date(2005, 11, 5)
4503    ///         .at(23, 59, 59, 123_456_789)
4504    ///         .in_tz("America/New_York")?,
4505    /// );
4506    ///
4507    /// # Ok::<(), Box<dyn std::error::Error>>(())
4508    /// ```
4509    #[inline]
4510    pub fn time(self, time: Time) -> ZonedWith {
4511        ZonedWith { datetime_with: self.datetime_with.time(time), ..self }
4512    }
4513
4514    /// Set the year field on a [`Zoned`].
4515    ///
4516    /// One can access this value via [`Zoned::year`].
4517    ///
4518    /// This overrides any previous year settings.
4519    ///
4520    /// # Errors
4521    ///
4522    /// This returns an error when [`ZonedWith::build`] is called if the
4523    /// given year is outside the range `-9999..=9999`. This can also return an
4524    /// error if the resulting date is otherwise invalid.
4525    ///
4526    /// # Example
4527    ///
4528    /// This shows how to create a new zoned datetime with a different year:
4529    ///
4530    /// ```
4531    /// use jiff::civil::date;
4532    ///
4533    /// let zdt1 = date(2005, 11, 5).at(15, 30, 0, 0).in_tz("America/New_York")?;
4534    /// assert_eq!(zdt1.year(), 2005);
4535    /// let zdt2 = zdt1.with().year(2007).build()?;
4536    /// assert_eq!(zdt2.year(), 2007);
4537    ///
4538    /// # Ok::<(), Box<dyn std::error::Error>>(())
4539    /// ```
4540    ///
4541    /// # Example: only changing the year can fail
4542    ///
4543    /// For example, while `2024-02-29T01:30:00[America/New_York]` is valid,
4544    /// `2023-02-29T01:30:00[America/New_York]` is not:
4545    ///
4546    /// ```
4547    /// use jiff::civil::date;
4548    ///
4549    /// let zdt = date(2024, 2, 29).at(1, 30, 0, 0).in_tz("America/New_York")?;
4550    /// assert!(zdt.with().year(2023).build().is_err());
4551    ///
4552    /// # Ok::<(), Box<dyn std::error::Error>>(())
4553    /// ```
4554    #[inline]
4555    pub fn year(self, year: i16) -> ZonedWith {
4556        ZonedWith { datetime_with: self.datetime_with.year(year), ..self }
4557    }
4558
4559    /// Set the year of a zoned datetime via its era and its non-negative
4560    /// numeric component.
4561    ///
4562    /// One can access this value via [`Zoned::era_year`].
4563    ///
4564    /// # Errors
4565    ///
4566    /// This returns an error when [`ZonedWith::build`] is called if the
4567    /// year is outside the range for the era specified. For [`Era::BCE`], the
4568    /// range is `1..=10000`. For [`Era::CE`], the range is `1..=9999`.
4569    ///
4570    /// # Example
4571    ///
4572    /// This shows that `CE` years are equivalent to the years used by this
4573    /// crate:
4574    ///
4575    /// ```
4576    /// use jiff::civil::{Era, date};
4577    ///
4578    /// let zdt1 = date(2005, 11, 5).at(8, 0, 0, 0).in_tz("America/New_York")?;
4579    /// assert_eq!(zdt1.year(), 2005);
4580    /// let zdt2 = zdt1.with().era_year(2007, Era::CE).build()?;
4581    /// assert_eq!(zdt2.year(), 2007);
4582    ///
4583    /// // CE years are always positive and can be at most 9999:
4584    /// assert!(zdt1.with().era_year(-5, Era::CE).build().is_err());
4585    /// assert!(zdt1.with().era_year(10_000, Era::CE).build().is_err());
4586    ///
4587    /// # Ok::<(), Box<dyn std::error::Error>>(())
4588    /// ```
4589    ///
4590    /// But `BCE` years always correspond to years less than or equal to `0`
4591    /// in this crate:
4592    ///
4593    /// ```
4594    /// use jiff::civil::{Era, date};
4595    ///
4596    /// let zdt1 = date(-27, 7, 1).at(8, 22, 30, 0).in_tz("America/New_York")?;
4597    /// assert_eq!(zdt1.year(), -27);
4598    /// assert_eq!(zdt1.era_year(), (28, Era::BCE));
4599    ///
4600    /// let zdt2 = zdt1.with().era_year(509, Era::BCE).build()?;
4601    /// assert_eq!(zdt2.year(), -508);
4602    /// assert_eq!(zdt2.era_year(), (509, Era::BCE));
4603    ///
4604    /// let zdt2 = zdt1.with().era_year(10_000, Era::BCE).build()?;
4605    /// assert_eq!(zdt2.year(), -9_999);
4606    /// assert_eq!(zdt2.era_year(), (10_000, Era::BCE));
4607    ///
4608    /// // BCE years are always positive and can be at most 10000:
4609    /// assert!(zdt1.with().era_year(-5, Era::BCE).build().is_err());
4610    /// assert!(zdt1.with().era_year(10_001, Era::BCE).build().is_err());
4611    ///
4612    /// # Ok::<(), Box<dyn std::error::Error>>(())
4613    /// ```
4614    ///
4615    /// # Example: overrides `ZonedWith::year`
4616    ///
4617    /// Setting this option will override any previous `ZonedWith::year`
4618    /// option:
4619    ///
4620    /// ```
4621    /// use jiff::civil::{Era, date};
4622    ///
4623    /// let zdt1 = date(2024, 7, 2).at(10, 27, 10, 123).in_tz("America/New_York")?;
4624    /// let zdt2 = zdt1.with().year(2000).era_year(1900, Era::CE).build()?;
4625    /// assert_eq!(
4626    ///     zdt2,
4627    ///     date(1900, 7, 2).at(10, 27, 10, 123).in_tz("America/New_York")?,
4628    /// );
4629    ///
4630    /// # Ok::<(), Box<dyn std::error::Error>>(())
4631    /// ```
4632    ///
4633    /// Similarly, `ZonedWith::year` will override any previous call to
4634    /// `ZonedWith::era_year`:
4635    ///
4636    /// ```
4637    /// use jiff::civil::{Era, date};
4638    ///
4639    /// let zdt1 = date(2024, 7, 2).at(19, 0, 1, 1).in_tz("America/New_York")?;
4640    /// let zdt2 = zdt1.with().era_year(1900, Era::CE).year(2000).build()?;
4641    /// assert_eq!(
4642    ///     zdt2,
4643    ///     date(2000, 7, 2).at(19, 0, 1, 1).in_tz("America/New_York")?,
4644    /// );
4645    ///
4646    /// # Ok::<(), Box<dyn std::error::Error>>(())
4647    /// ```
4648    #[inline]
4649    pub fn era_year(self, year: i16, era: Era) -> ZonedWith {
4650        ZonedWith {
4651            datetime_with: self.datetime_with.era_year(year, era),
4652            ..self
4653        }
4654    }
4655
4656    /// Set the month field on a [`Zoned`].
4657    ///
4658    /// One can access this value via [`Zoned::month`].
4659    ///
4660    /// This overrides any previous month settings.
4661    ///
4662    /// # Errors
4663    ///
4664    /// This returns an error when [`ZonedWith::build`] is called if the
4665    /// given month is outside the range `1..=12`. This can also return an
4666    /// error if the resulting date is otherwise invalid.
4667    ///
4668    /// # Example
4669    ///
4670    /// This shows how to create a new zoned datetime with a different month:
4671    ///
4672    /// ```
4673    /// use jiff::civil::date;
4674    ///
4675    /// let zdt1 = date(2005, 11, 5)
4676    ///     .at(18, 3, 59, 123_456_789)
4677    ///     .in_tz("America/New_York")?;
4678    /// assert_eq!(zdt1.month(), 11);
4679    ///
4680    /// let zdt2 = zdt1.with().month(6).build()?;
4681    /// assert_eq!(zdt2.month(), 6);
4682    ///
4683    /// # Ok::<(), Box<dyn std::error::Error>>(())
4684    /// ```
4685    ///
4686    /// # Example: only changing the month can fail
4687    ///
4688    /// For example, while `2024-10-31T00:00:00[America/New_York]` is valid,
4689    /// `2024-11-31T00:00:00[America/New_York]` is not:
4690    ///
4691    /// ```
4692    /// use jiff::civil::date;
4693    ///
4694    /// let zdt = date(2024, 10, 31).at(0, 0, 0, 0).in_tz("America/New_York")?;
4695    /// assert!(zdt.with().month(11).build().is_err());
4696    ///
4697    /// # Ok::<(), Box<dyn std::error::Error>>(())
4698    /// ```
4699    #[inline]
4700    pub fn month(self, month: i8) -> ZonedWith {
4701        ZonedWith { datetime_with: self.datetime_with.month(month), ..self }
4702    }
4703
4704    /// Set the day field on a [`Zoned`].
4705    ///
4706    /// One can access this value via [`Zoned::day`].
4707    ///
4708    /// This overrides any previous day settings.
4709    ///
4710    /// # Errors
4711    ///
4712    /// This returns an error when [`ZonedWith::build`] is called if the
4713    /// given given day is outside of allowable days for the corresponding year
4714    /// and month fields.
4715    ///
4716    /// # Example
4717    ///
4718    /// This shows some examples of setting the day, including a leap day:
4719    ///
4720    /// ```
4721    /// use jiff::civil::date;
4722    ///
4723    /// let zdt1 = date(2024, 2, 5).at(21, 59, 1, 999).in_tz("America/New_York")?;
4724    /// assert_eq!(zdt1.day(), 5);
4725    /// let zdt2 = zdt1.with().day(10).build()?;
4726    /// assert_eq!(zdt2.day(), 10);
4727    /// let zdt3 = zdt1.with().day(29).build()?;
4728    /// assert_eq!(zdt3.day(), 29);
4729    ///
4730    /// # Ok::<(), Box<dyn std::error::Error>>(())
4731    /// ```
4732    ///
4733    /// # Example: changing only the day can fail
4734    ///
4735    /// This shows some examples that will fail:
4736    ///
4737    /// ```
4738    /// use jiff::civil::date;
4739    ///
4740    /// let zdt1 = date(2023, 2, 5)
4741    ///     .at(22, 58, 58, 9_999)
4742    ///     .in_tz("America/New_York")?;
4743    /// // 2023 is not a leap year
4744    /// assert!(zdt1.with().day(29).build().is_err());
4745    ///
4746    /// // September has 30 days, not 31.
4747    /// let zdt1 = date(2023, 9, 5).in_tz("America/New_York")?;
4748    /// assert!(zdt1.with().day(31).build().is_err());
4749    ///
4750    /// # Ok::<(), Box<dyn std::error::Error>>(())
4751    /// ```
4752    #[inline]
4753    pub fn day(self, day: i8) -> ZonedWith {
4754        ZonedWith { datetime_with: self.datetime_with.day(day), ..self }
4755    }
4756
4757    /// Set the day field on a [`Zoned`] via the ordinal number of a day
4758    /// within a year.
4759    ///
4760    /// When used, any settings for month are ignored since the month is
4761    /// determined by the day of the year.
4762    ///
4763    /// The valid values for `day` are `1..=366`. Note though that `366` is
4764    /// only valid for leap years.
4765    ///
4766    /// This overrides any previous day settings.
4767    ///
4768    /// # Errors
4769    ///
4770    /// This returns an error when [`ZonedWith::build`] is called if the
4771    /// given day is outside the allowed range of `1..=366`, or when a value of
4772    /// `366` is given for a non-leap year.
4773    ///
4774    /// # Example
4775    ///
4776    /// This demonstrates that if a year is a leap year, then `60` corresponds
4777    /// to February 29:
4778    ///
4779    /// ```
4780    /// use jiff::civil::date;
4781    ///
4782    /// let zdt = date(2024, 1, 1)
4783    ///     .at(23, 59, 59, 999_999_999)
4784    ///     .in_tz("America/New_York")?;
4785    /// assert_eq!(
4786    ///     zdt.with().day_of_year(60).build()?,
4787    ///     date(2024, 2, 29)
4788    ///         .at(23, 59, 59, 999_999_999)
4789    ///         .in_tz("America/New_York")?,
4790    /// );
4791    ///
4792    /// # Ok::<(), Box<dyn std::error::Error>>(())
4793    /// ```
4794    ///
4795    /// But for non-leap years, day 60 is March 1:
4796    ///
4797    /// ```
4798    /// use jiff::civil::date;
4799    ///
4800    /// let zdt = date(2023, 1, 1)
4801    ///     .at(23, 59, 59, 999_999_999)
4802    ///     .in_tz("America/New_York")?;
4803    /// assert_eq!(
4804    ///     zdt.with().day_of_year(60).build()?,
4805    ///     date(2023, 3, 1)
4806    ///         .at(23, 59, 59, 999_999_999)
4807    ///         .in_tz("America/New_York")?,
4808    /// );
4809    ///
4810    /// # Ok::<(), Box<dyn std::error::Error>>(())
4811    /// ```
4812    ///
4813    /// And using `366` for a non-leap year will result in an error, since
4814    /// non-leap years only have 365 days:
4815    ///
4816    /// ```
4817    /// use jiff::civil::date;
4818    ///
4819    /// let zdt = date(2023, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York")?;
4820    /// assert!(zdt.with().day_of_year(366).build().is_err());
4821    /// // The maximal year is not a leap year, so it returns an error too.
4822    /// let zdt = date(9999, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York")?;
4823    /// assert!(zdt.with().day_of_year(366).build().is_err());
4824    ///
4825    /// # Ok::<(), Box<dyn std::error::Error>>(())
4826    /// ```
4827    #[inline]
4828    pub fn day_of_year(self, day: i16) -> ZonedWith {
4829        ZonedWith {
4830            datetime_with: self.datetime_with.day_of_year(day),
4831            ..self
4832        }
4833    }
4834
4835    /// Set the day field on a [`Zoned`] via the ordinal number of a day
4836    /// within a year, but ignoring leap years.
4837    ///
4838    /// When used, any settings for month are ignored since the month is
4839    /// determined by the day of the year.
4840    ///
4841    /// The valid values for `day` are `1..=365`. The value `365` always
4842    /// corresponds to the last day of the year, even for leap years. It is
4843    /// impossible for this routine to return a zoned datetime corresponding to
4844    /// February 29. (Unless there is a relevant time zone transition that
4845    /// provokes disambiguation that shifts the datetime into February 29.)
4846    ///
4847    /// This overrides any previous day settings.
4848    ///
4849    /// # Errors
4850    ///
4851    /// This returns an error when [`ZonedWith::build`] is called if the
4852    /// given day is outside the allowed range of `1..=365`.
4853    ///
4854    /// # Example
4855    ///
4856    /// This demonstrates that `60` corresponds to March 1, regardless of
4857    /// whether the year is a leap year or not:
4858    ///
4859    /// ```
4860    /// use jiff::civil::date;
4861    ///
4862    /// let zdt = date(2023, 1, 1)
4863    ///     .at(23, 59, 59, 999_999_999)
4864    ///     .in_tz("America/New_York")?;
4865    /// assert_eq!(
4866    ///     zdt.with().day_of_year_no_leap(60).build()?,
4867    ///     date(2023, 3, 1)
4868    ///         .at(23, 59, 59, 999_999_999)
4869    ///         .in_tz("America/New_York")?,
4870    /// );
4871    ///
4872    /// let zdt = date(2024, 1, 1)
4873    ///     .at(23, 59, 59, 999_999_999)
4874    ///     .in_tz("America/New_York")?;
4875    /// assert_eq!(
4876    ///     zdt.with().day_of_year_no_leap(60).build()?,
4877    ///     date(2024, 3, 1)
4878    ///         .at(23, 59, 59, 999_999_999)
4879    ///         .in_tz("America/New_York")?,
4880    /// );
4881    ///
4882    /// # Ok::<(), Box<dyn std::error::Error>>(())
4883    /// ```
4884    ///
4885    /// And using `365` for any year will always yield the last day of the
4886    /// year:
4887    ///
4888    /// ```
4889    /// use jiff::civil::date;
4890    ///
4891    /// let zdt = date(2023, 1, 1)
4892    ///     .at(23, 59, 59, 999_999_999)
4893    ///     .in_tz("America/New_York")?;
4894    /// assert_eq!(
4895    ///     zdt.with().day_of_year_no_leap(365).build()?,
4896    ///     zdt.last_of_year()?,
4897    /// );
4898    ///
4899    /// let zdt = date(2024, 1, 1)
4900    ///     .at(23, 59, 59, 999_999_999)
4901    ///     .in_tz("America/New_York")?;
4902    /// assert_eq!(
4903    ///     zdt.with().day_of_year_no_leap(365).build()?,
4904    ///     zdt.last_of_year()?,
4905    /// );
4906    ///
4907    /// // Careful at the boundaries. The last day of the year isn't
4908    /// // representable with all time zones. For example:
4909    /// let zdt = date(9999, 1, 1)
4910    ///     .at(23, 59, 59, 999_999_999)
4911    ///     .in_tz("America/New_York")?;
4912    /// assert!(zdt.with().day_of_year_no_leap(365).build().is_err());
4913    /// // But with other time zones, it works okay:
4914    /// let zdt = date(9999, 1, 1)
4915    ///     .at(23, 59, 59, 999_999_999)
4916    ///     .to_zoned(jiff::tz::TimeZone::fixed(jiff::tz::Offset::MAX))?;
4917    /// assert_eq!(
4918    ///     zdt.with().day_of_year_no_leap(365).build()?,
4919    ///     zdt.last_of_year()?,
4920    /// );
4921    ///
4922    /// # Ok::<(), Box<dyn std::error::Error>>(())
4923    /// ```
4924    ///
4925    /// A value of `366` is out of bounds, even for leap years:
4926    ///
4927    /// ```
4928    /// use jiff::civil::date;
4929    ///
4930    /// let zdt = date(2024, 1, 1).at(5, 30, 0, 0).in_tz("America/New_York")?;
4931    /// assert!(zdt.with().day_of_year_no_leap(366).build().is_err());
4932    ///
4933    /// # Ok::<(), Box<dyn std::error::Error>>(())
4934    /// ```
4935    #[inline]
4936    pub fn day_of_year_no_leap(self, day: i16) -> ZonedWith {
4937        ZonedWith {
4938            datetime_with: self.datetime_with.day_of_year_no_leap(day),
4939            ..self
4940        }
4941    }
4942
4943    /// Set the hour field on a [`Zoned`].
4944    ///
4945    /// One can access this value via [`Zoned::hour`].
4946    ///
4947    /// This overrides any previous hour settings.
4948    ///
4949    /// # Errors
4950    ///
4951    /// This returns an error when [`ZonedWith::build`] is called if the
4952    /// given hour is outside the range `0..=23`.
4953    ///
4954    /// # Example
4955    ///
4956    /// ```
4957    /// use jiff::civil::time;
4958    ///
4959    /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York")?;
4960    /// assert_eq!(zdt1.hour(), 15);
4961    /// let zdt2 = zdt1.with().hour(3).build()?;
4962    /// assert_eq!(zdt2.hour(), 3);
4963    ///
4964    /// # Ok::<(), Box<dyn std::error::Error>>(())
4965    /// ```
4966    #[inline]
4967    pub fn hour(self, hour: i8) -> ZonedWith {
4968        ZonedWith { datetime_with: self.datetime_with.hour(hour), ..self }
4969    }
4970
4971    /// Set the minute field on a [`Zoned`].
4972    ///
4973    /// One can access this value via [`Zoned::minute`].
4974    ///
4975    /// This overrides any previous minute settings.
4976    ///
4977    /// # Errors
4978    ///
4979    /// This returns an error when [`ZonedWith::build`] is called if the
4980    /// given minute is outside the range `0..=59`.
4981    ///
4982    /// # Example
4983    ///
4984    /// ```
4985    /// use jiff::civil::time;
4986    ///
4987    /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York")?;
4988    /// assert_eq!(zdt1.minute(), 21);
4989    /// let zdt2 = zdt1.with().minute(3).build()?;
4990    /// assert_eq!(zdt2.minute(), 3);
4991    ///
4992    /// # Ok::<(), Box<dyn std::error::Error>>(())
4993    /// ```
4994    #[inline]
4995    pub fn minute(self, minute: i8) -> ZonedWith {
4996        ZonedWith { datetime_with: self.datetime_with.minute(minute), ..self }
4997    }
4998
4999    /// Set the second field on a [`Zoned`].
5000    ///
5001    /// One can access this value via [`Zoned::second`].
5002    ///
5003    /// This overrides any previous second settings.
5004    ///
5005    /// # Errors
5006    ///
5007    /// This returns an error when [`ZonedWith::build`] is called if the
5008    /// given second is outside the range `0..=59`.
5009    ///
5010    /// # Example
5011    ///
5012    /// ```
5013    /// use jiff::civil::time;
5014    ///
5015    /// let zdt1 = time(15, 21, 59, 0).on(2010, 6, 1).in_tz("America/New_York")?;
5016    /// assert_eq!(zdt1.second(), 59);
5017    /// let zdt2 = zdt1.with().second(3).build()?;
5018    /// assert_eq!(zdt2.second(), 3);
5019    ///
5020    /// # Ok::<(), Box<dyn std::error::Error>>(())
5021    /// ```
5022    #[inline]
5023    pub fn second(self, second: i8) -> ZonedWith {
5024        ZonedWith { datetime_with: self.datetime_with.second(second), ..self }
5025    }
5026
5027    /// Set the millisecond field on a [`Zoned`].
5028    ///
5029    /// One can access this value via [`Zoned::millisecond`].
5030    ///
5031    /// This overrides any previous millisecond settings.
5032    ///
5033    /// Note that this only sets the millisecond component. It does
5034    /// not change the microsecond or nanosecond components. To set
5035    /// the fractional second component to nanosecond precision, use
5036    /// [`ZonedWith::subsec_nanosecond`].
5037    ///
5038    /// # Errors
5039    ///
5040    /// This returns an error when [`ZonedWith::build`] is called if the
5041    /// given millisecond is outside the range `0..=999`, or if both this and
5042    /// [`ZonedWith::subsec_nanosecond`] are set.
5043    ///
5044    /// # Example
5045    ///
5046    /// This shows the relationship between [`Zoned::millisecond`] and
5047    /// [`Zoned::subsec_nanosecond`]:
5048    ///
5049    /// ```
5050    /// use jiff::civil::time;
5051    ///
5052    /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York")?;
5053    /// let zdt2 = zdt1.with().millisecond(123).build()?;
5054    /// assert_eq!(zdt2.subsec_nanosecond(), 123_000_000);
5055    ///
5056    /// # Ok::<(), Box<dyn std::error::Error>>(())
5057    /// ```
5058    #[inline]
5059    pub fn millisecond(self, millisecond: i16) -> ZonedWith {
5060        ZonedWith {
5061            datetime_with: self.datetime_with.millisecond(millisecond),
5062            ..self
5063        }
5064    }
5065
5066    /// Set the microsecond field on a [`Zoned`].
5067    ///
5068    /// One can access this value via [`Zoned::microsecond`].
5069    ///
5070    /// This overrides any previous microsecond settings.
5071    ///
5072    /// Note that this only sets the microsecond component. It does
5073    /// not change the millisecond or nanosecond components. To set
5074    /// the fractional second component to nanosecond precision, use
5075    /// [`ZonedWith::subsec_nanosecond`].
5076    ///
5077    /// # Errors
5078    ///
5079    /// This returns an error when [`ZonedWith::build`] is called if the
5080    /// given microsecond is outside the range `0..=999`, or if both this and
5081    /// [`ZonedWith::subsec_nanosecond`] are set.
5082    ///
5083    /// # Example
5084    ///
5085    /// This shows the relationship between [`Zoned::microsecond`] and
5086    /// [`Zoned::subsec_nanosecond`]:
5087    ///
5088    /// ```
5089    /// use jiff::civil::time;
5090    ///
5091    /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York")?;
5092    /// let zdt2 = zdt1.with().microsecond(123).build()?;
5093    /// assert_eq!(zdt2.subsec_nanosecond(), 123_000);
5094    ///
5095    /// # Ok::<(), Box<dyn std::error::Error>>(())
5096    /// ```
5097    #[inline]
5098    pub fn microsecond(self, microsecond: i16) -> ZonedWith {
5099        ZonedWith {
5100            datetime_with: self.datetime_with.microsecond(microsecond),
5101            ..self
5102        }
5103    }
5104
5105    /// Set the nanosecond field on a [`Zoned`].
5106    ///
5107    /// One can access this value via [`Zoned::nanosecond`].
5108    ///
5109    /// This overrides any previous nanosecond settings.
5110    ///
5111    /// Note that this only sets the nanosecond component. It does
5112    /// not change the millisecond or microsecond components. To set
5113    /// the fractional second component to nanosecond precision, use
5114    /// [`ZonedWith::subsec_nanosecond`].
5115    ///
5116    /// # Errors
5117    ///
5118    /// This returns an error when [`ZonedWith::build`] is called if the
5119    /// given nanosecond is outside the range `0..=999`, or if both this and
5120    /// [`ZonedWith::subsec_nanosecond`] are set.
5121    ///
5122    /// # Example
5123    ///
5124    /// This shows the relationship between [`Zoned::nanosecond`] and
5125    /// [`Zoned::subsec_nanosecond`]:
5126    ///
5127    /// ```
5128    /// use jiff::civil::time;
5129    ///
5130    /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York")?;
5131    /// let zdt2 = zdt1.with().nanosecond(123).build()?;
5132    /// assert_eq!(zdt2.subsec_nanosecond(), 123);
5133    ///
5134    /// # Ok::<(), Box<dyn std::error::Error>>(())
5135    /// ```
5136    #[inline]
5137    pub fn nanosecond(self, nanosecond: i16) -> ZonedWith {
5138        ZonedWith {
5139            datetime_with: self.datetime_with.nanosecond(nanosecond),
5140            ..self
5141        }
5142    }
5143
5144    /// Set the subsecond nanosecond field on a [`Zoned`].
5145    ///
5146    /// If you want to access this value on `Zoned`, then use
5147    /// [`Zoned::subsec_nanosecond`].
5148    ///
5149    /// This overrides any previous subsecond nanosecond settings.
5150    ///
5151    /// Note that this sets the entire fractional second component to
5152    /// nanosecond precision, and overrides any individual millisecond,
5153    /// microsecond or nanosecond settings. To set individual components,
5154    /// use [`ZonedWith::millisecond`], [`ZonedWith::microsecond`] or
5155    /// [`ZonedWith::nanosecond`].
5156    ///
5157    /// # Errors
5158    ///
5159    /// This returns an error when [`ZonedWith::build`] is called if the
5160    /// given subsecond nanosecond is outside the range `0..=999,999,999`,
5161    /// or if both this and one of [`ZonedWith::millisecond`],
5162    /// [`ZonedWith::microsecond`] or [`ZonedWith::nanosecond`] are set.
5163    ///
5164    /// # Example
5165    ///
5166    /// This shows the relationship between constructing a `Zoned` value
5167    /// with subsecond nanoseconds and its individual subsecond fields:
5168    ///
5169    /// ```
5170    /// use jiff::civil::time;
5171    ///
5172    /// let zdt1 = time(15, 21, 35, 0).on(2010, 6, 1).in_tz("America/New_York")?;
5173    /// let zdt2 = zdt1.with().subsec_nanosecond(123_456_789).build()?;
5174    /// assert_eq!(zdt2.millisecond(), 123);
5175    /// assert_eq!(zdt2.microsecond(), 456);
5176    /// assert_eq!(zdt2.nanosecond(), 789);
5177    ///
5178    /// # Ok::<(), Box<dyn std::error::Error>>(())
5179    /// ```
5180    #[inline]
5181    pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> ZonedWith {
5182        ZonedWith {
5183            datetime_with: self
5184                .datetime_with
5185                .subsec_nanosecond(subsec_nanosecond),
5186            ..self
5187        }
5188    }
5189
5190    /// Set the offset to use in the new zoned datetime.
5191    ///
5192    /// This can be used in some cases to explicitly disambiguate a datetime
5193    /// that could correspond to multiple instants in time.
5194    ///
5195    /// How the offset is used to construct a new zoned datetime
5196    /// depends on the offset conflict resolution strategy
5197    /// set via [`ZonedWith::offset_conflict`]. The default is
5198    /// [`OffsetConflict::PreferOffset`], which will always try to use the
5199    /// offset to resolve a datetime to an instant, unless the offset is
5200    /// incorrect for this zoned datetime's time zone. In which case, only the
5201    /// time zone is used to select the correct offset (which may involve using
5202    /// the disambiguation strategy set via [`ZonedWith::disambiguation`]).
5203    ///
5204    /// # Example
5205    ///
5206    /// This example shows parsing the first time the 1 o'clock hour appeared
5207    /// on a clock in New York on 2024-11-03, and then changing only the
5208    /// offset to flip it to the second time 1 o'clock appeared on the clock:
5209    ///
5210    /// ```
5211    /// use jiff::{tz, Zoned};
5212    ///
5213    /// let zdt1: Zoned = "2024-11-03 01:30-04[America/New_York]".parse()?;
5214    /// let zdt2 = zdt1.with().offset(tz::offset(-5)).build()?;
5215    /// assert_eq!(
5216    ///     zdt2.to_string(),
5217    ///     // Everything stays the same, except for the offset.
5218    ///     "2024-11-03T01:30:00-05:00[America/New_York]",
5219    /// );
5220    ///
5221    /// // If we use an invalid offset for the America/New_York time zone,
5222    /// // then it will be ignored and the disambiguation strategy set will
5223    /// // be used.
5224    /// let zdt3 = zdt1.with().offset(tz::offset(-12)).build()?;
5225    /// assert_eq!(
5226    ///     zdt3.to_string(),
5227    ///     // The default disambiguation is Compatible.
5228    ///     "2024-11-03T01:30:00-04:00[America/New_York]",
5229    /// );
5230    /// // But we could change the disambiguation strategy to reject such
5231    /// // cases!
5232    /// let result = zdt1
5233    ///     .with()
5234    ///     .offset(tz::offset(-12))
5235    ///     .disambiguation(tz::Disambiguation::Reject)
5236    ///     .build();
5237    /// assert!(result.is_err());
5238    ///
5239    /// # Ok::<(), Box<dyn std::error::Error>>(())
5240    /// ```
5241    #[inline]
5242    pub fn offset(self, offset: Offset) -> ZonedWith {
5243        ZonedWith { offset: Some(offset), ..self }
5244    }
5245
5246    /// Set the conflict resolution strategy for when an offset is inconsistent
5247    /// with the time zone.
5248    ///
5249    /// See the documentation on [`OffsetConflict`] for more details about the
5250    /// different strategies one can choose.
5251    ///
5252    /// Unlike parsing (where the default is `OffsetConflict::Reject`), the
5253    /// default for `ZonedWith` is [`OffsetConflict::PreferOffset`], which
5254    /// avoids daylight saving time disambiguation causing unexpected 1-hour
5255    /// shifts after small changes to clock time.
5256    ///
5257    /// # Example
5258    ///
5259    /// ```
5260    /// use jiff::Zoned;
5261    ///
5262    /// // Set to the "second" time 1:30 is on the clocks in New York on
5263    /// // 2024-11-03. The offset in the datetime string makes this
5264    /// // unambiguous.
5265    /// let zdt1 = "2024-11-03T01:30-05[America/New_York]".parse::<Zoned>()?;
5266    /// // Now we change the minute field:
5267    /// let zdt2 = zdt1.with().minute(34).build()?;
5268    /// assert_eq!(
5269    ///     zdt2.to_string(),
5270    ///     // Without taking the offset of the `Zoned` value into account,
5271    ///     // this would have defaulted to using the "compatible"
5272    ///     // disambiguation strategy, which would have selected the earlier
5273    ///     // offset of -04 instead of sticking with the later offset of -05.
5274    ///     "2024-11-03T01:34:00-05:00[America/New_York]",
5275    /// );
5276    ///
5277    /// // But note that if we change the clock time such that the previous
5278    /// // offset is no longer valid (by moving back before DST ended), then
5279    /// // the default strategy will automatically adapt and change the offset.
5280    /// let zdt2 = zdt1.with().hour(0).build()?;
5281    /// assert_eq!(
5282    ///     zdt2.to_string(),
5283    ///     "2024-11-03T00:30:00-04:00[America/New_York]",
5284    /// );
5285    ///
5286    /// # Ok::<(), Box<dyn std::error::Error>>(())
5287    /// ```
5288    #[inline]
5289    pub fn offset_conflict(self, strategy: OffsetConflict) -> ZonedWith {
5290        ZonedWith { offset_conflict: strategy, ..self }
5291    }
5292
5293    /// Set the disambiguation strategy for when a zoned datetime falls into a
5294    /// time zone transition "fold" or "gap."
5295    ///
5296    /// The most common manifestation of such time zone transitions is daylight
5297    /// saving time. In most cases, the transition into daylight saving time
5298    /// moves the civil time ("the time you see on the clock") ahead one hour.
5299    /// This is called a "gap" because an hour on the clock is skipped. While
5300    /// the transition out of daylight saving time moves the civil time back
5301    /// one hour. This is called a "fold" because an hour on the clock is
5302    /// repeated.
5303    ///
5304    /// In the case of a gap, an ambiguous datetime manifests as a time that
5305    /// never appears on a clock. (For example, `02:30` on `2024-03-10` in New
5306    /// York.) In the case of a fold, an ambiguous datetime manifests as a
5307    /// time that repeats itself. (For example, `01:30` on `2024-11-03` in New
5308    /// York.) So when a fold occurs, you don't know whether it's the "first"
5309    /// occurrence of that time or the "second."
5310    ///
5311    /// Time zone transitions are not just limited to daylight saving time,
5312    /// although those are the most common. In other cases, a transition occurs
5313    /// because of a change in the offset of the time zone itself. (See the
5314    /// examples below.)
5315    ///
5316    /// # Example: time zone offset change
5317    ///
5318    /// In this example, we explore a time zone offset change in Hawaii that
5319    /// occurred on `1947-06-08`. Namely, Hawaii went from a `-10:30` offset
5320    /// to a `-10:00` offset at `02:00`. This results in a 30 minute gap in
5321    /// civil time.
5322    ///
5323    /// ```
5324    /// use jiff::{civil::date, tz, ToSpan, Zoned};
5325    ///
5326    /// // This datetime is unambiguous...
5327    /// let zdt1 = "1943-06-02T02:05[Pacific/Honolulu]".parse::<Zoned>()?;
5328    /// // but... 02:05 didn't exist on clocks on 1947-06-08.
5329    /// let zdt2 = zdt1
5330    ///     .with()
5331    ///     .disambiguation(tz::Disambiguation::Later)
5332    ///     .year(1947)
5333    ///     .day(8)
5334    ///     .build()?;
5335    /// // Our parser is configured to select the later time, so we jump to
5336    /// // 02:35. But if we used `Disambiguation::Earlier`, then we'd get
5337    /// // 01:35.
5338    /// assert_eq!(zdt2.datetime(), date(1947, 6, 8).at(2, 35, 0, 0));
5339    /// assert_eq!(zdt2.offset(), tz::offset(-10));
5340    ///
5341    /// // If we subtract 10 minutes from 02:35, notice that we (correctly)
5342    /// // jump to 01:55 *and* our offset is corrected to -10:30.
5343    /// let zdt3 = zdt2.checked_sub(10.minutes())?;
5344    /// assert_eq!(zdt3.datetime(), date(1947, 6, 8).at(1, 55, 0, 0));
5345    /// assert_eq!(zdt3.offset(), tz::offset(-10).saturating_sub(30.minutes()));
5346    ///
5347    /// # Ok::<(), Box<dyn std::error::Error>>(())
5348    /// ```
5349    ///
5350    /// # Example: offset conflict resolution and disambiguation
5351    ///
5352    /// This example shows how the disambiguation configuration can
5353    /// interact with the default offset conflict resolution strategy of
5354    /// [`OffsetConflict::PreferOffset`]:
5355    ///
5356    /// ```
5357    /// use jiff::{civil::date, tz, Zoned};
5358    ///
5359    /// // This datetime is unambiguous.
5360    /// let zdt1 = "2024-03-11T02:05[America/New_York]".parse::<Zoned>()?;
5361    /// assert_eq!(zdt1.offset(), tz::offset(-4));
5362    /// // But the same time on March 10 is ambiguous because there is a gap!
5363    /// let zdt2 = zdt1
5364    ///     .with()
5365    ///     .disambiguation(tz::Disambiguation::Earlier)
5366    ///     .day(10)
5367    ///     .build()?;
5368    /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(1, 5, 0, 0));
5369    /// assert_eq!(zdt2.offset(), tz::offset(-5));
5370    ///
5371    /// # Ok::<(), Box<dyn std::error::Error>>(())
5372    /// ```
5373    ///
5374    /// Namely, while we started with an offset of `-04`, it (along with all
5375    /// other offsets) are considered invalid during civil time gaps due to
5376    /// time zone transitions (such as the beginning of daylight saving time in
5377    /// most locations).
5378    ///
5379    /// The default disambiguation strategy is
5380    /// [`Disambiguation::Compatible`], which in the case of gaps, chooses the
5381    /// time after the gap:
5382    ///
5383    /// ```
5384    /// use jiff::{civil::date, tz, Zoned};
5385    ///
5386    /// // This datetime is unambiguous.
5387    /// let zdt1 = "2024-03-11T02:05[America/New_York]".parse::<Zoned>()?;
5388    /// assert_eq!(zdt1.offset(), tz::offset(-4));
5389    /// // But the same time on March 10 is ambiguous because there is a gap!
5390    /// let zdt2 = zdt1
5391    ///     .with()
5392    ///     .day(10)
5393    ///     .build()?;
5394    /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(3, 5, 0, 0));
5395    /// assert_eq!(zdt2.offset(), tz::offset(-4));
5396    ///
5397    /// # Ok::<(), Box<dyn std::error::Error>>(())
5398    /// ```
5399    ///
5400    /// Alternatively, one can choose to always respect the offset, and thus
5401    /// civil time for the provided time zone will be adjusted to match the
5402    /// instant prescribed by the offset. In this case, no disambiguation is
5403    /// performed:
5404    ///
5405    /// ```
5406    /// use jiff::{civil::date, tz, Zoned};
5407    ///
5408    /// // This datetime is unambiguous. But `2024-03-10T02:05` is!
5409    /// let zdt1 = "2024-03-11T02:05[America/New_York]".parse::<Zoned>()?;
5410    /// assert_eq!(zdt1.offset(), tz::offset(-4));
5411    /// // But the same time on March 10 is ambiguous because there is a gap!
5412    /// let zdt2 = zdt1
5413    ///     .with()
5414    ///     .offset_conflict(tz::OffsetConflict::AlwaysOffset)
5415    ///     .day(10)
5416    ///     .build()?;
5417    /// // Why do we get this result? Because `2024-03-10T02:05-04` is
5418    /// // `2024-03-10T06:05Z`. And in `America/New_York`, the civil time
5419    /// // for that timestamp is `2024-03-10T01:05-05`.
5420    /// assert_eq!(zdt2.datetime(), date(2024, 3, 10).at(1, 5, 0, 0));
5421    /// assert_eq!(zdt2.offset(), tz::offset(-5));
5422    ///
5423    /// # Ok::<(), Box<dyn std::error::Error>>(())
5424    /// ```
5425    #[inline]
5426    pub fn disambiguation(self, strategy: Disambiguation) -> ZonedWith {
5427        ZonedWith { disambiguation: strategy, ..self }
5428    }
5429}
5430
5431#[cfg(test)]
5432mod tests {
5433    use std::io::Cursor;
5434
5435    use alloc::string::ToString;
5436
5437    use crate::{
5438        civil::{date, datetime},
5439        span::span_eq,
5440        tz, ToSpan,
5441    };
5442
5443    use super::*;
5444
5445    #[test]
5446    fn until_with_largest_unit() {
5447        if crate::tz::db().is_definitively_empty() {
5448            return;
5449        }
5450
5451        let zdt1: Zoned = date(1995, 12, 7)
5452            .at(3, 24, 30, 3500)
5453            .in_tz("Asia/Kolkata")
5454            .unwrap();
5455        let zdt2: Zoned =
5456            date(2019, 1, 31).at(15, 30, 0, 0).in_tz("Asia/Kolkata").unwrap();
5457        let span = zdt1.until(&zdt2).unwrap();
5458        span_eq!(
5459            span,
5460            202956
5461                .hours()
5462                .minutes(5)
5463                .seconds(29)
5464                .milliseconds(999)
5465                .microseconds(996)
5466                .nanoseconds(500)
5467        );
5468        let span = zdt1.until((Unit::Year, &zdt2)).unwrap();
5469        span_eq!(
5470            span,
5471            23.years()
5472                .months(1)
5473                .days(24)
5474                .hours(12)
5475                .minutes(5)
5476                .seconds(29)
5477                .milliseconds(999)
5478                .microseconds(996)
5479                .nanoseconds(500)
5480        );
5481
5482        let span = zdt2.until((Unit::Year, &zdt1)).unwrap();
5483        span_eq!(
5484            span,
5485            -23.years()
5486                .months(1)
5487                .days(24)
5488                .hours(12)
5489                .minutes(5)
5490                .seconds(29)
5491                .milliseconds(999)
5492                .microseconds(996)
5493                .nanoseconds(500)
5494        );
5495        let span = zdt1.until((Unit::Nanosecond, &zdt2)).unwrap();
5496        span_eq!(span, 730641929999996500i64.nanoseconds());
5497
5498        let zdt1: Zoned =
5499            date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
5500        let zdt2: Zoned = date(2020, 4, 24)
5501            .at(21, 0, 0, 0)
5502            .in_tz("America/New_York")
5503            .unwrap();
5504        let span = zdt1.until(&zdt2).unwrap();
5505        span_eq!(span, 2756.hours());
5506        let span = zdt1.until((Unit::Year, &zdt2)).unwrap();
5507        span_eq!(span, 3.months().days(23).hours(21));
5508
5509        let zdt1: Zoned = date(2000, 10, 29)
5510            .at(0, 0, 0, 0)
5511            .in_tz("America/Vancouver")
5512            .unwrap();
5513        let zdt2: Zoned = date(2000, 10, 29)
5514            .at(23, 0, 0, 5)
5515            .in_tz("America/Vancouver")
5516            .unwrap();
5517        let span = zdt1.until((Unit::Day, &zdt2)).unwrap();
5518        span_eq!(span, 24.hours().nanoseconds(5));
5519    }
5520
5521    #[cfg(target_pointer_width = "64")]
5522    #[test]
5523    fn zoned_size() {
5524        #[cfg(debug_assertions)]
5525        {
5526            #[cfg(feature = "alloc")]
5527            {
5528                assert_eq!(96, core::mem::size_of::<Zoned>());
5529            }
5530            #[cfg(all(target_pointer_width = "64", not(feature = "alloc")))]
5531            {
5532                assert_eq!(96, core::mem::size_of::<Zoned>());
5533            }
5534        }
5535        #[cfg(not(debug_assertions))]
5536        {
5537            #[cfg(feature = "alloc")]
5538            {
5539                assert_eq!(40, core::mem::size_of::<Zoned>());
5540            }
5541            #[cfg(all(target_pointer_width = "64", not(feature = "alloc")))]
5542            {
5543                // This asserts the same value as the alloc value above, but
5544                // it wasn't always this way, which is why it's written out
5545                // separately. Moreover, in theory, I'd be open to regressing
5546                // this value if it led to an improvement in alloc-mode. But
5547                // more likely, it would be nice to decrease this size in
5548                // non-alloc modes.
5549                assert_eq!(40, core::mem::size_of::<Zoned>());
5550            }
5551        }
5552    }
5553
5554    /// A `serde` deserializer compatibility test.
5555    ///
5556    /// Serde YAML used to be unable to deserialize `jiff` types,
5557    /// as deserializing from bytes is not supported by the deserializer.
5558    ///
5559    /// - <https://github.com/BurntSushi/jiff/issues/138>
5560    /// - <https://github.com/BurntSushi/jiff/discussions/148>
5561    #[test]
5562    fn zoned_deserialize_yaml() {
5563        if crate::tz::db().is_definitively_empty() {
5564            return;
5565        }
5566
5567        let expected = datetime(2024, 10, 31, 16, 33, 53, 123456789)
5568            .in_tz("UTC")
5569            .unwrap();
5570
5571        let deserialized: Zoned =
5572            serde_yaml::from_str("2024-10-31T16:33:53.123456789+00:00[UTC]")
5573                .unwrap();
5574
5575        assert_eq!(deserialized, expected);
5576
5577        let deserialized: Zoned = serde_yaml::from_slice(
5578            "2024-10-31T16:33:53.123456789+00:00[UTC]".as_bytes(),
5579        )
5580        .unwrap();
5581
5582        assert_eq!(deserialized, expected);
5583
5584        let cursor = Cursor::new(b"2024-10-31T16:33:53.123456789+00:00[UTC]");
5585        let deserialized: Zoned = serde_yaml::from_reader(cursor).unwrap();
5586
5587        assert_eq!(deserialized, expected);
5588    }
5589
5590    /// This is a regression test for a case where changing a zoned datetime
5591    /// to have a time of midnight ends up producing a counter-intuitive
5592    /// result.
5593    ///
5594    /// See: <https://github.com/BurntSushi/jiff/issues/211>
5595    #[test]
5596    fn zoned_with_time_dst_after_gap() {
5597        if crate::tz::db().is_definitively_empty() {
5598            return;
5599        }
5600
5601        let zdt1: Zoned = "2024-03-31T12:00[Atlantic/Azores]".parse().unwrap();
5602        assert_eq!(
5603            zdt1.to_string(),
5604            "2024-03-31T12:00:00+00:00[Atlantic/Azores]"
5605        );
5606
5607        let zdt2 = zdt1.with().time(Time::midnight()).build().unwrap();
5608        assert_eq!(
5609            zdt2.to_string(),
5610            "2024-03-31T01:00:00+00:00[Atlantic/Azores]"
5611        );
5612    }
5613
5614    /// Similar to `zoned_with_time_dst_after_gap`, but tests what happens
5615    /// when moving from/to both sides of the gap.
5616    ///
5617    /// See: <https://github.com/BurntSushi/jiff/issues/211>
5618    #[test]
5619    fn zoned_with_time_dst_us_eastern() {
5620        if crate::tz::db().is_definitively_empty() {
5621            return;
5622        }
5623
5624        let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]".parse().unwrap();
5625        assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5626        let zdt2 = zdt1.with().hour(2).build().unwrap();
5627        assert_eq!(zdt2.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]");
5628
5629        let zdt1: Zoned = "2024-03-10T03:30[US/Eastern]".parse().unwrap();
5630        assert_eq!(zdt1.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]");
5631        let zdt2 = zdt1.with().hour(2).build().unwrap();
5632        assert_eq!(zdt2.to_string(), "2024-03-10T03:30:00-04:00[US/Eastern]");
5633
5634        // I originally thought that this was difference from Temporal. Namely,
5635        // I thought that Temporal ignored the disambiguation setting (and the
5636        // bad offset). But it doesn't. I was holding it wrong.
5637        //
5638        // See: https://github.com/tc39/proposal-temporal/issues/3078
5639        let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]".parse().unwrap();
5640        assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5641        let zdt2 = zdt1
5642            .with()
5643            .offset(tz::offset(10))
5644            .hour(2)
5645            .disambiguation(Disambiguation::Earlier)
5646            .build()
5647            .unwrap();
5648        assert_eq!(zdt2.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5649
5650        // This should also respect the disambiguation setting even without
5651        // explicitly specifying an invalid offset. This is becaue `02:30-05`
5652        // is regarded as invalid since `02:30` isn't a valid civil time on
5653        // this date in this time zone.
5654        let zdt1: Zoned = "2024-03-10T01:30[US/Eastern]".parse().unwrap();
5655        assert_eq!(zdt1.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5656        let zdt2 = zdt1
5657            .with()
5658            .hour(2)
5659            .disambiguation(Disambiguation::Earlier)
5660            .build()
5661            .unwrap();
5662        assert_eq!(zdt2.to_string(), "2024-03-10T01:30:00-05:00[US/Eastern]");
5663    }
5664
5665    #[test]
5666    fn zoned_precision_loss() {
5667        if crate::tz::db().is_definitively_empty() {
5668            return;
5669        }
5670
5671        let zdt1: Zoned = "2025-01-25T19:32:21.783444592+01:00[Europe/Paris]"
5672            .parse()
5673            .unwrap();
5674        let span = 1.second();
5675        let zdt2 = &zdt1 + span;
5676        assert_eq!(
5677            zdt2.to_string(),
5678            "2025-01-25T19:32:22.783444592+01:00[Europe/Paris]"
5679        );
5680        assert_eq!(zdt1, &zdt2 - span, "should be reversible");
5681    }
5682
5683    // See: https://github.com/BurntSushi/jiff/issues/290
5684    #[test]
5685    fn zoned_roundtrip_regression() {
5686        if crate::tz::db().is_definitively_empty() {
5687            return;
5688        }
5689
5690        let zdt: Zoned =
5691            "2063-03-31T10:00:00+11:00[Australia/Sydney]".parse().unwrap();
5692        assert_eq!(zdt.offset(), super::Offset::constant(11));
5693        let roundtrip = zdt.time_zone().to_zoned(zdt.datetime()).unwrap();
5694        assert_eq!(zdt, roundtrip);
5695    }
5696
5697    // See: https://github.com/BurntSushi/jiff/issues/305
5698    #[test]
5699    fn zoned_round_dst_day_length() {
5700        if crate::tz::db().is_definitively_empty() {
5701            return;
5702        }
5703
5704        let zdt1: Zoned =
5705            "2025-03-09T12:15[America/New_York]".parse().unwrap();
5706        let zdt2 = zdt1.round(Unit::Day).unwrap();
5707        // Since this day is only 23 hours long, it should round down instead
5708        // of up (as it would on a normal 24 hour day). Interestingly, the bug
5709        // was causing this to not only round up, but to a datetime that wasn't
5710        // the start of a day. Specifically, 2025-03-10T01:00:00-04:00.
5711        assert_eq!(
5712            zdt2.to_string(),
5713            "2025-03-09T00:00:00-05:00[America/New_York]"
5714        );
5715    }
5716
5717    #[test]
5718    fn zoned_round_errors() {
5719        if crate::tz::db().is_definitively_empty() {
5720            return;
5721        }
5722
5723        let zdt: Zoned = "2025-03-09T12:15[America/New_York]".parse().unwrap();
5724
5725        insta::assert_snapshot!(
5726            zdt.round(Unit::Year).unwrap_err(),
5727            @"datetime rounding does not support years"
5728        );
5729        insta::assert_snapshot!(
5730            zdt.round(Unit::Month).unwrap_err(),
5731            @"datetime rounding does not support months"
5732        );
5733        insta::assert_snapshot!(
5734            zdt.round(Unit::Week).unwrap_err(),
5735            @"datetime rounding does not support weeks"
5736        );
5737
5738        let options = ZonedRound::new().smallest(Unit::Day).increment(2);
5739        insta::assert_snapshot!(
5740            zdt.round(options).unwrap_err(),
5741            @"increment 2 for rounding datetime to days must be 1) less than 2, 2) divide into it evenly and 3) greater than zero"
5742        );
5743    }
5744}