aho_corasick/dfa.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/*!
Provides direct access to a DFA implementation of Aho-Corasick.
This is a low-level API that generally only needs to be used in niche
circumstances. When possible, prefer using [`AhoCorasick`](crate::AhoCorasick)
instead of a DFA directly. Using an `DFA` directly is typically only necessary
when one needs access to the [`Automaton`] trait implementation.
*/
use alloc::{vec, vec::Vec};
use crate::{
automaton::Automaton,
nfa::noncontiguous,
util::{
alphabet::ByteClasses,
error::{BuildError, MatchError},
int::{Usize, U32},
prefilter::Prefilter,
primitives::{IteratorIndexExt, PatternID, SmallIndex, StateID},
search::{Anchored, MatchKind, StartKind},
special::Special,
},
};
/// A DFA implementation of Aho-Corasick.
///
/// When possible, prefer using [`AhoCorasick`](crate::AhoCorasick) instead of
/// this type directly. Using a `DFA` directly is typically only necessary when
/// one needs access to the [`Automaton`] trait implementation.
///
/// This DFA can only be built by first constructing a [`noncontiguous::NFA`].
/// Both [`DFA::new`] and [`Builder::build`] do this for you automatically, but
/// [`Builder::build_from_noncontiguous`] permits doing it explicitly.
///
/// A DFA provides the best possible search performance (in this crate) via two
/// mechanisms:
///
/// * All states use a dense representation for their transitions.
/// * All failure transitions are pre-computed such that they are never
/// explicitly handled at search time.
///
/// These two facts combined mean that every state transition is performed
/// using a constant number of instructions. However, this comes at
/// great cost. The memory usage of a DFA can be quite exorbitant.
/// It is potentially multiple orders of magnitude greater than a
/// [`contiguous::NFA`](crate::nfa::contiguous::NFA) for example. In exchange,
/// a DFA will typically have better search speed than a `contiguous::NFA`, but
/// not by orders of magnitude.
///
/// Unless you have a small number of patterns or memory usage is not a concern
/// and search performance is critical, a DFA is usually not the best choice.
///
/// Moreover, unlike the NFAs in this crate, it is costly for a DFA to
/// support for anchored and unanchored search configurations. Namely,
/// since failure transitions are pre-computed, supporting both anchored
/// and unanchored searches requires a duplication of the transition table,
/// making the memory usage of such a DFA ever bigger. (The NFAs in this crate
/// unconditionally support both anchored and unanchored searches because there
/// is essentially no added cost for doing so.) It is for this reason that
/// a DFA's support for anchored and unanchored searches can be configured
/// via [`Builder::start_kind`]. By default, a DFA only supports unanchored
/// searches.
///
/// # Example
///
/// This example shows how to build an `DFA` directly and use it to execute
/// [`Automaton::try_find`]:
///
/// ```
/// use aho_corasick::{
/// automaton::Automaton,
/// dfa::DFA,
/// Input, Match,
/// };
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let nfa = DFA::new(patterns).unwrap();
/// assert_eq!(
/// Some(Match::must(0, 1..2)),
/// nfa.try_find(&Input::new(haystack))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// It is also possible to implement your own version of `try_find`. See the
/// [`Automaton`] documentation for an example.
#[derive(Clone)]
pub struct DFA {
/// The DFA transition table. IDs in this table are pre-multiplied. So
/// instead of the IDs being 0, 1, 2, 3, ..., they are 0*stride, 1*stride,
/// 2*stride, 3*stride, ...
trans: Vec<StateID>,
/// The matches for every match state in this DFA. This is first indexed by
/// state index (so that's `sid >> stride2`) and then by order in which the
/// matches are meant to occur.
matches: Vec<Vec<PatternID>>,
/// The amount of heap memory used, in bytes, by the inner Vecs of
/// 'matches'.
matches_memory_usage: usize,
/// The length of each pattern. This is used to compute the start offset
/// of a match.
pattern_lens: Vec<SmallIndex>,
/// A prefilter for accelerating searches, if one exists.
prefilter: Option<Prefilter>,
/// The match semantics built into this DFA.
match_kind: MatchKind,
/// The total number of states in this DFA.
state_len: usize,
/// The alphabet size, or total number of equivalence classes, for this
/// DFA. Note that the actual number of transitions in each state is
/// stride=2^stride2, where stride is the smallest power of 2 greater than
/// or equal to alphabet_len. We do things this way so that we can use
/// bitshifting to go from a state ID to an index into 'matches'.
alphabet_len: usize,
/// The exponent with a base 2, such that stride=2^stride2. Given a state
/// index 'i', its state identifier is 'i << stride2'. Given a state
/// identifier 'sid', its state index is 'sid >> stride2'.
stride2: usize,
/// The equivalence classes for this DFA. All transitions are defined on
/// equivalence classes and not on the 256 distinct byte values.
byte_classes: ByteClasses,
/// The length of the shortest pattern in this automaton.
min_pattern_len: usize,
/// The length of the longest pattern in this automaton.
max_pattern_len: usize,
/// The information required to deduce which states are "special" in this
/// DFA.
special: Special,
}
impl DFA {
/// Create a new Aho-Corasick DFA using the default configuration.
///
/// Use a [`Builder`] if you want to change the configuration.
pub fn new<I, P>(patterns: I) -> Result<DFA, BuildError>
where
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
DFA::builder().build(patterns)
}
/// A convenience method for returning a new Aho-Corasick DFA builder.
///
/// This usually permits one to just import the `DFA` type.
pub fn builder() -> Builder {
Builder::new()
}
}
impl DFA {
/// A sentinel state ID indicating that a search should stop once it has
/// entered this state. When a search stops, it returns a match if one has
/// been found, otherwise no match. A DFA always has an actual dead state
/// at this ID.
///
/// N.B. DFAs, unlike NFAs, do not have any notion of a FAIL state.
/// Namely, the whole point of a DFA is that the FAIL state is completely
/// compiled away. That is, DFA construction involves pre-computing the
/// failure transitions everywhere, such that failure transitions are no
/// longer used at search time. This, combined with its uniformly dense
/// representation, are the two most important factors in why it's faster
/// than the NFAs in this crate.
const DEAD: StateID = StateID::new_unchecked(0);
/// Adds the given pattern IDs as matches to the given state and also
/// records the added memory usage.
fn set_matches(
&mut self,
sid: StateID,
pids: impl Iterator<Item = PatternID>,
) {
let index = (sid.as_usize() >> self.stride2).checked_sub(2).unwrap();
let mut at_least_one = false;
for pid in pids {
self.matches[index].push(pid);
self.matches_memory_usage += PatternID::SIZE;
at_least_one = true;
}
assert!(at_least_one, "match state must have non-empty pids");
}
}
// SAFETY: 'start_state' always returns a valid state ID, 'next_state' always
// returns a valid state ID given a valid state ID. We otherwise claim that
// all other methods are correct as well.
unsafe impl Automaton for DFA {
#[inline(always)]
fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> {
// Either of the start state IDs can be DEAD, in which case, support
// for that type of search is not provided by this DFA. Which start
// state IDs are inactive depends on the 'StartKind' configuration at
// DFA construction time.
match anchored {
Anchored::No => {
let start = self.special.start_unanchored_id;
if start == DFA::DEAD {
Err(MatchError::invalid_input_unanchored())
} else {
Ok(start)
}
}
Anchored::Yes => {
let start = self.special.start_anchored_id;
if start == DFA::DEAD {
Err(MatchError::invalid_input_anchored())
} else {
Ok(start)
}
}
}
}
#[inline(always)]
fn next_state(
&self,
_anchored: Anchored,
sid: StateID,
byte: u8,
) -> StateID {
let class = self.byte_classes.get(byte);
self.trans[(sid.as_u32() + u32::from(class)).as_usize()]
}
#[inline(always)]
fn is_special(&self, sid: StateID) -> bool {
sid <= self.special.max_special_id
}
#[inline(always)]
fn is_dead(&self, sid: StateID) -> bool {
sid == DFA::DEAD
}
#[inline(always)]
fn is_match(&self, sid: StateID) -> bool {
!self.is_dead(sid) && sid <= self.special.max_match_id
}
#[inline(always)]
fn is_start(&self, sid: StateID) -> bool {
sid == self.special.start_unanchored_id
|| sid == self.special.start_anchored_id
}
#[inline(always)]
fn match_kind(&self) -> MatchKind {
self.match_kind
}
#[inline(always)]
fn patterns_len(&self) -> usize {
self.pattern_lens.len()
}
#[inline(always)]
fn pattern_len(&self, pid: PatternID) -> usize {
self.pattern_lens[pid].as_usize()
}
#[inline(always)]
fn min_pattern_len(&self) -> usize {
self.min_pattern_len
}
#[inline(always)]
fn max_pattern_len(&self) -> usize {
self.max_pattern_len
}
#[inline(always)]
fn match_len(&self, sid: StateID) -> usize {
debug_assert!(self.is_match(sid));
let offset = (sid.as_usize() >> self.stride2) - 2;
self.matches[offset].len()
}
#[inline(always)]
fn match_pattern(&self, sid: StateID, index: usize) -> PatternID {
debug_assert!(self.is_match(sid));
let offset = (sid.as_usize() >> self.stride2) - 2;
self.matches[offset][index]
}
#[inline(always)]
fn memory_usage(&self) -> usize {
use core::mem::size_of;
(self.trans.len() * size_of::<u32>())
+ (self.matches.len() * size_of::<Vec<PatternID>>())
+ self.matches_memory_usage
+ (self.pattern_lens.len() * size_of::<SmallIndex>())
+ self.prefilter.as_ref().map_or(0, |p| p.memory_usage())
}
#[inline(always)]
fn prefilter(&self) -> Option<&Prefilter> {
self.prefilter.as_ref()
}
}
impl core::fmt::Debug for DFA {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use crate::{
automaton::{fmt_state_indicator, sparse_transitions},
util::debug::DebugByte,
};
writeln!(f, "dfa::DFA(")?;
for index in 0..self.state_len {
let sid = StateID::new_unchecked(index << self.stride2);
// While we do currently include the FAIL state in the transition
// table (to simplify construction), it is never actually used. It
// poses problems with the code below because it gets treated as
// a match state incidentally when it is, of course, not. So we
// special case it. The fail state is always the first state after
// the dead state.
//
// If the construction is changed to remove the fail state (it
// probably should be), then this special case should be updated.
if index == 1 {
writeln!(f, "F {:06}:", sid.as_usize())?;
continue;
}
fmt_state_indicator(f, self, sid)?;
write!(f, "{:06}: ", sid.as_usize())?;
let it = (0..self.byte_classes.alphabet_len()).map(|class| {
(class.as_u8(), self.trans[sid.as_usize() + class])
});
for (i, (start, end, next)) in sparse_transitions(it).enumerate() {
if i > 0 {
write!(f, ", ")?;
}
if start == end {
write!(
f,
"{:?} => {:?}",
DebugByte(start),
next.as_usize()
)?;
} else {
write!(
f,
"{:?}-{:?} => {:?}",
DebugByte(start),
DebugByte(end),
next.as_usize()
)?;
}
}
write!(f, "\n")?;
if self.is_match(sid) {
write!(f, " matches: ")?;
for i in 0..self.match_len(sid) {
if i > 0 {
write!(f, ", ")?;
}
let pid = self.match_pattern(sid, i);
write!(f, "{}", pid.as_usize())?;
}
write!(f, "\n")?;
}
}
writeln!(f, "match kind: {:?}", self.match_kind)?;
writeln!(f, "prefilter: {:?}", self.prefilter.is_some())?;
writeln!(f, "state length: {:?}", self.state_len)?;
writeln!(f, "pattern length: {:?}", self.patterns_len())?;
writeln!(f, "shortest pattern length: {:?}", self.min_pattern_len)?;
writeln!(f, "longest pattern length: {:?}", self.max_pattern_len)?;
writeln!(f, "alphabet length: {:?}", self.alphabet_len)?;
writeln!(f, "stride: {:?}", 1 << self.stride2)?;
writeln!(f, "byte classes: {:?}", self.byte_classes)?;
writeln!(f, "memory usage: {:?}", self.memory_usage())?;
writeln!(f, ")")?;
Ok(())
}
}
/// A builder for configuring an Aho-Corasick DFA.
///
/// This builder has a subset of the options available to a
/// [`AhoCorasickBuilder`](crate::AhoCorasickBuilder). Of the shared options,
/// their behavior is identical.
#[derive(Clone, Debug)]
pub struct Builder {
noncontiguous: noncontiguous::Builder,
start_kind: StartKind,
byte_classes: bool,
}
impl Default for Builder {
fn default() -> Builder {
Builder {
noncontiguous: noncontiguous::Builder::new(),
start_kind: StartKind::Unanchored,
byte_classes: true,
}
}
}
impl Builder {
/// Create a new builder for configuring an Aho-Corasick DFA.
pub fn new() -> Builder {
Builder::default()
}
/// Build an Aho-Corasick DFA from the given iterator of patterns.
///
/// A builder may be reused to create more DFAs.
pub fn build<I, P>(&self, patterns: I) -> Result<DFA, BuildError>
where
I: IntoIterator<Item = P>,
P: AsRef<[u8]>,
{
let nnfa = self.noncontiguous.build(patterns)?;
self.build_from_noncontiguous(&nnfa)
}
/// Build an Aho-Corasick DFA from the given noncontiguous NFA.
///
/// Note that when this method is used, only the `start_kind` and
/// `byte_classes` settings on this builder are respected. The other
/// settings only apply to the initial construction of the Aho-Corasick
/// automaton. Since using this method requires that initial construction
/// has already completed, all settings impacting only initial construction
/// are no longer relevant.
pub fn build_from_noncontiguous(
&self,
nnfa: &noncontiguous::NFA,
) -> Result<DFA, BuildError> {
debug!("building DFA");
let byte_classes = if self.byte_classes {
nnfa.byte_classes().clone()
} else {
ByteClasses::singletons()
};
let state_len = match self.start_kind {
StartKind::Unanchored | StartKind::Anchored => nnfa.states().len(),
StartKind::Both => {
// These unwraps are OK because we know that the number of
// NFA states is < StateID::LIMIT which is in turn less than
// i32::MAX. Thus, there is always room to multiply by 2.
// Finally, the number of states is always at least 4 in the
// NFA (DEAD, FAIL, START-UNANCHORED, START-ANCHORED), so the
// subtraction of 4 is okay.
//
// Note that we subtract 4 because the "anchored" part of
// the DFA duplicates the unanchored part (without failure
// transitions), but reuses the DEAD, FAIL and START states.
nnfa.states()
.len()
.checked_mul(2)
.unwrap()
.checked_sub(4)
.unwrap()
}
};
let trans_len =
match state_len.checked_shl(byte_classes.stride2().as_u32()) {
Some(trans_len) => trans_len,
None => {
return Err(BuildError::state_id_overflow(
StateID::MAX.as_u64(),
usize::MAX.as_u64(),
))
}
};
StateID::new(trans_len.checked_sub(byte_classes.stride()).unwrap())
.map_err(|e| {
BuildError::state_id_overflow(
StateID::MAX.as_u64(),
e.attempted(),
)
})?;
let num_match_states = match self.start_kind {
StartKind::Unanchored | StartKind::Anchored => {
nnfa.special().max_match_id.as_usize().checked_sub(1).unwrap()
}
StartKind::Both => nnfa
.special()
.max_match_id
.as_usize()
.checked_sub(1)
.unwrap()
.checked_mul(2)
.unwrap(),
};
let mut dfa = DFA {
trans: vec![DFA::DEAD; trans_len],
matches: vec![vec![]; num_match_states],
matches_memory_usage: 0,
pattern_lens: nnfa.pattern_lens_raw().to_vec(),
prefilter: nnfa.prefilter().map(|p| p.clone()),
match_kind: nnfa.match_kind(),
state_len,
alphabet_len: byte_classes.alphabet_len(),
stride2: byte_classes.stride2(),
byte_classes,
min_pattern_len: nnfa.min_pattern_len(),
max_pattern_len: nnfa.max_pattern_len(),
// The special state IDs are set later.
special: Special::zero(),
};
match self.start_kind {
StartKind::Both => {
self.finish_build_both_starts(nnfa, &mut dfa);
}
StartKind::Unanchored => {
self.finish_build_one_start(Anchored::No, nnfa, &mut dfa);
}
StartKind::Anchored => {
self.finish_build_one_start(Anchored::Yes, nnfa, &mut dfa)
}
}
debug!(
"DFA built, <states: {:?}, size: {:?}, \
alphabet len: {:?}, stride: {:?}>",
dfa.state_len,
dfa.memory_usage(),
dfa.byte_classes.alphabet_len(),
dfa.byte_classes.stride(),
);
// The vectors can grow ~twice as big during construction because a
// Vec amortizes growth. But here, let's shrink things back down to
// what we actually need since we're never going to add more to it.
dfa.trans.shrink_to_fit();
dfa.pattern_lens.shrink_to_fit();
dfa.matches.shrink_to_fit();
// TODO: We might also want to shrink each Vec inside of `dfa.matches`,
// or even better, convert it to one contiguous allocation. But I think
// I went with nested allocs for good reason (can't remember), so this
// may be tricky to do. I decided not to shrink them here because it
// might require a fair bit of work to do. It's unclear whether it's
// worth it.
Ok(dfa)
}
/// Finishes building a DFA for either unanchored or anchored searches,
/// but NOT both.
fn finish_build_one_start(
&self,
anchored: Anchored,
nnfa: &noncontiguous::NFA,
dfa: &mut DFA,
) {
// This function always succeeds because we check above that all of the
// states in the NFA can be mapped to DFA state IDs.
let stride2 = dfa.stride2;
let old2new = |oldsid: StateID| {
StateID::new_unchecked(oldsid.as_usize() << stride2)
};
for (oldsid, state) in nnfa.states().iter().with_state_ids() {
let newsid = old2new(oldsid);
if state.is_match() {
dfa.set_matches(newsid, nnfa.iter_matches(oldsid));
}
sparse_iter(
nnfa,
oldsid,
&dfa.byte_classes,
|byte, class, mut oldnextsid| {
if oldnextsid == noncontiguous::NFA::FAIL {
if anchored.is_anchored() {
oldnextsid = noncontiguous::NFA::DEAD;
} else if state.fail() == noncontiguous::NFA::DEAD {
// This is a special case that avoids following
// DEAD transitions in a non-contiguous NFA.
// Following these transitions is pretty slow
// because the non-contiguous NFA will always use
// a sparse representation for it (because the
// DEAD state is usually treated as a sentinel).
// The *vast* majority of failure states are DEAD
// states, so this winds up being pretty slow if
// we go through the non-contiguous NFA state
// transition logic. Instead, just do it ourselves.
oldnextsid = noncontiguous::NFA::DEAD;
} else {
oldnextsid = nnfa.next_state(
Anchored::No,
state.fail(),
byte,
);
}
}
dfa.trans[newsid.as_usize() + usize::from(class)] =
old2new(oldnextsid);
},
);
}
// Now that we've remapped all the IDs in our states, all that's left
// is remapping the special state IDs.
let old = nnfa.special();
let new = &mut dfa.special;
new.max_special_id = old2new(old.max_special_id);
new.max_match_id = old2new(old.max_match_id);
if anchored.is_anchored() {
new.start_unanchored_id = DFA::DEAD;
new.start_anchored_id = old2new(old.start_anchored_id);
} else {
new.start_unanchored_id = old2new(old.start_unanchored_id);
new.start_anchored_id = DFA::DEAD;
}
}
/// Finishes building a DFA that supports BOTH unanchored and anchored
/// searches. It works by inter-leaving unanchored states with anchored
/// states in the same transition table. This way, we avoid needing to
/// re-shuffle states afterward to ensure that our states still look like
/// DEAD, MATCH, ..., START-UNANCHORED, START-ANCHORED, NON-MATCH, ...
///
/// Honestly this is pretty inscrutable... Simplifications are most
/// welcome.
fn finish_build_both_starts(
&self,
nnfa: &noncontiguous::NFA,
dfa: &mut DFA,
) {
let stride2 = dfa.stride2;
let stride = 1 << stride2;
let mut remap_unanchored = vec![DFA::DEAD; nnfa.states().len()];
let mut remap_anchored = vec![DFA::DEAD; nnfa.states().len()];
let mut is_anchored = vec![false; dfa.state_len];
let mut newsid = DFA::DEAD;
let next_dfa_id =
|sid: StateID| StateID::new_unchecked(sid.as_usize() + stride);
for (oldsid, state) in nnfa.states().iter().with_state_ids() {
if oldsid == noncontiguous::NFA::DEAD
|| oldsid == noncontiguous::NFA::FAIL
{
remap_unanchored[oldsid] = newsid;
remap_anchored[oldsid] = newsid;
newsid = next_dfa_id(newsid);
} else if oldsid == nnfa.special().start_unanchored_id
|| oldsid == nnfa.special().start_anchored_id
{
if oldsid == nnfa.special().start_unanchored_id {
remap_unanchored[oldsid] = newsid;
remap_anchored[oldsid] = DFA::DEAD;
} else {
remap_unanchored[oldsid] = DFA::DEAD;
remap_anchored[oldsid] = newsid;
is_anchored[newsid.as_usize() >> stride2] = true;
}
if state.is_match() {
dfa.set_matches(newsid, nnfa.iter_matches(oldsid));
}
sparse_iter(
nnfa,
oldsid,
&dfa.byte_classes,
|_, class, oldnextsid| {
let class = usize::from(class);
if oldnextsid == noncontiguous::NFA::FAIL {
dfa.trans[newsid.as_usize() + class] = DFA::DEAD;
} else {
dfa.trans[newsid.as_usize() + class] = oldnextsid;
}
},
);
newsid = next_dfa_id(newsid);
} else {
let unewsid = newsid;
newsid = next_dfa_id(newsid);
let anewsid = newsid;
newsid = next_dfa_id(newsid);
remap_unanchored[oldsid] = unewsid;
remap_anchored[oldsid] = anewsid;
is_anchored[anewsid.as_usize() >> stride2] = true;
if state.is_match() {
dfa.set_matches(unewsid, nnfa.iter_matches(oldsid));
dfa.set_matches(anewsid, nnfa.iter_matches(oldsid));
}
sparse_iter(
nnfa,
oldsid,
&dfa.byte_classes,
|byte, class, oldnextsid| {
let class = usize::from(class);
if oldnextsid == noncontiguous::NFA::FAIL {
let oldnextsid =
if state.fail() == noncontiguous::NFA::DEAD {
noncontiguous::NFA::DEAD
} else {
nnfa.next_state(
Anchored::No,
state.fail(),
byte,
)
};
dfa.trans[unewsid.as_usize() + class] = oldnextsid;
} else {
dfa.trans[unewsid.as_usize() + class] = oldnextsid;
dfa.trans[anewsid.as_usize() + class] = oldnextsid;
}
},
);
}
}
for i in 0..dfa.state_len {
let sid = i << stride2;
if is_anchored[i] {
for next in dfa.trans[sid..][..stride].iter_mut() {
*next = remap_anchored[*next];
}
} else {
for next in dfa.trans[sid..][..stride].iter_mut() {
*next = remap_unanchored[*next];
}
}
}
// Now that we've remapped all the IDs in our states, all that's left
// is remapping the special state IDs.
let old = nnfa.special();
let new = &mut dfa.special;
new.max_special_id = remap_anchored[old.max_special_id];
new.max_match_id = remap_anchored[old.max_match_id];
new.start_unanchored_id = remap_unanchored[old.start_unanchored_id];
new.start_anchored_id = remap_anchored[old.start_anchored_id];
}
/// Set the desired match semantics.
///
/// This only applies when using [`Builder::build`] and not
/// [`Builder::build_from_noncontiguous`].
///
/// See
/// [`AhoCorasickBuilder::match_kind`](crate::AhoCorasickBuilder::match_kind)
/// for more documentation and examples.
pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder {
self.noncontiguous.match_kind(kind);
self
}
/// Enable ASCII-aware case insensitive matching.
///
/// This only applies when using [`Builder::build`] and not
/// [`Builder::build_from_noncontiguous`].
///
/// See
/// [`AhoCorasickBuilder::ascii_case_insensitive`](crate::AhoCorasickBuilder::ascii_case_insensitive)
/// for more documentation and examples.
pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder {
self.noncontiguous.ascii_case_insensitive(yes);
self
}
/// Enable heuristic prefilter optimizations.
///
/// This only applies when using [`Builder::build`] and not
/// [`Builder::build_from_noncontiguous`].
///
/// See
/// [`AhoCorasickBuilder::prefilter`](crate::AhoCorasickBuilder::prefilter)
/// for more documentation and examples.
pub fn prefilter(&mut self, yes: bool) -> &mut Builder {
self.noncontiguous.prefilter(yes);
self
}
/// Sets the starting state configuration for the automaton.
///
/// See
/// [`AhoCorasickBuilder::start_kind`](crate::AhoCorasickBuilder::start_kind)
/// for more documentation and examples.
pub fn start_kind(&mut self, kind: StartKind) -> &mut Builder {
self.start_kind = kind;
self
}
/// A debug setting for whether to attempt to shrink the size of the
/// automaton's alphabet or not.
///
/// This should never be enabled unless you're debugging an automaton.
/// Namely, disabling byte classes makes transitions easier to reason
/// about, since they use the actual bytes instead of equivalence classes.
/// Disabling this confers no performance benefit at search time.
///
/// See
/// [`AhoCorasickBuilder::byte_classes`](crate::AhoCorasickBuilder::byte_classes)
/// for more documentation and examples.
pub fn byte_classes(&mut self, yes: bool) -> &mut Builder {
self.byte_classes = yes;
self
}
}
/// Iterate over all possible equivalence class transitions in this state.
/// The closure is called for all transitions with a distinct equivalence
/// class, even those not explicitly represented in this sparse state. For
/// any implicitly defined transitions, the given closure is called with
/// the fail state ID.
///
/// The closure is guaranteed to be called precisely
/// `byte_classes.alphabet_len()` times, once for every possible class in
/// ascending order.
fn sparse_iter<F: FnMut(u8, u8, StateID)>(
nnfa: &noncontiguous::NFA,
oldsid: StateID,
classes: &ByteClasses,
mut f: F,
) {
let mut prev_class = None;
let mut byte = 0usize;
for t in nnfa.iter_trans(oldsid) {
while byte < usize::from(t.byte()) {
let rep = byte.as_u8();
let class = classes.get(rep);
byte += 1;
if prev_class != Some(class) {
f(rep, class, noncontiguous::NFA::FAIL);
prev_class = Some(class);
}
}
let rep = t.byte();
let class = classes.get(rep);
byte += 1;
if prev_class != Some(class) {
f(rep, class, t.next());
prev_class = Some(class);
}
}
for b in byte..=255 {
let rep = b.as_u8();
let class = classes.get(rep);
if prev_class != Some(class) {
f(rep, class, noncontiguous::NFA::FAIL);
prev_class = Some(class);
}
}
}